

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

JULIANA SILVA BRASIL

INFLUÊNCIA DO EL NIÑO OSCILAÇÃO SUL (ENOS) NA PREVISÃO DA IRRADIAÇÃO GLOBAL HORIZONTAL DE FORTALEZA

FORTALEZA 2020

JULIANA SILVA BRASIL

INFLUÊNCIA DO EL NIÑO OSCILAÇÃO SUL (ENOS) NA PREVISÃO DA IRRADIAÇÃO GLOBAL HORIZONTAL DE FORTALEZA

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Mestre em Engenharia Mecânica. Área de concentração: Processos, Equipamentos e Sistemas para Energias Renováveis.

Orientador: Prof. Dr. Paulo Alexandre Costa Rocha.

FORTALEZA 2020

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

B83i Brasil, Juliana Silva.

Influência do El Niño Oscilação Sul (ENOS) na Previsão da Irradiação Global Horizontal de Fortaleza / Juliana Silva Brasil. – 2020.

49 f. : il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Mecânica, Fortaleza, 2020. Orientação: Prof. Dr. Paulo Alexandre Costa Rocha.

1. Energia Solar. 2. Aprendizagem de Máquina. 3. Irradiação Global Horizontal. 4. El Niño. 5. La Niña. I. Título.

CDD 620.1

JULIANA SILVA BRASIL

INFLUÊNCIA DO EL NIÑO OSCILAÇÃO SUL (ENOS) NA PREVISÃO DA IRRADIAÇÃO GLOBAL HORIZONTAL DE FORTALEZA

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica, do Centro de Tecnologia da Universidade Federal do Ceará, como requisito parcial para a obtenção do Título de Mestre em Engenharia Mecânica. Área de Concentração: Processos, Equipamentos e Sistemas para Energias Renováveis.

Aprovada em 08/10/2020

BANCA EXAMINADORA

Prof. Dr. Paulo Alexandre Costa Rocha (Orientador) Universidade Federal do Ceará (UFC)

Prof. Dr. Paulo Cesar Marques de Carvalho Universidade Federal do Ceará (UFC)

Prof. Hugo Tiago Carreira Pedro, Ph.D. University of California, San Diego (UCSD)

Aos meus pais e à minha irmã.

AGRADECIMENTOS

À CAPES, pelo apoio financeiro com a manutenção da bolsa de auxílio.

Ao Prof. Dr. Paulo Alexandre Costa Rocha.

Aos professores que compõem a banca.

À minha família, amigos e aos colegas da turma de mestrado e do laboratório.

RESUMO

A participação da energia solar na matriz energética brasileira vem aumentando anualmente, Nesse contexto, são especialmente no Ceará. suscitadas questões relativas à complementaridade de abastecimento, uma vez que a fonte solar é intermitente. Previsões de irradiação podem auxiliar na tomada de decisões por parte de controladores de sistemas de abastecimento de energia solar, evitando quedas de fornecimento e aumentando a competitividade dessa matriz. O planejamento adequado pode ser facilitado pela previsão da irradiação utilizando métodos de aprendizagem de máquinas. A presente dissertação avalia o desempenho de 4 modelos de previsão da irradiação global horizontal - redes neurais, Boosting, Bagging e modelo de persistência - para a cidade de Fortaleza, Ceará, em oito horizontes temporais distintos, analisando a influência do El Niño e da La Niña, na forma do preditor Oceanic Niño Index, ONI, nessas previsões. Utiliza-se, além do ONI, informações meteorológicas (temperatura ambiente, umidade relativa, velocidade do ar, direção do vento e nível de precipitação), dados de irradiação e hora e data da aquisição da informação. É avaliado o desempenho dos modelos considerando três situações: o banco de dados completo, banco subdividido entre os anos com ocorrência de La Niña e os anos com ocorrência de El Niño (banco El Niño e banco La Niña) e o banco subdividido entre as estações do ano (bancos Inverno, Verão, Primavera e Outono). É aplicada validação cruzada 5-fold, bem como é realizada seleção de parâmetros para as redes neurais, o Boosting e o Bagging. O cálculo da variabilidade da irradiação global horizontal permite a classificação desse preditor como de fraca variabilidade. Os resultados apontam redução do RMSE entre 0,11% a 2,2% quando o preditor ONI é adicionado ao banco de dados completo. O banco El Niño obtém nRMSE entre 0,03% a 1,3% superior ao banco La Niña. Há redução de até 5,7% do nRMSE pela adição do ONI no banco subdividido por estações. O Boosting apresenta os menores erros dentre os modelos considerados, e o Bagging é o modelo menos sensível à presença do ONI, apresentando em seis horizontes temporais variação nula do nRMSE em função da adição desse preditor. A utilização dos bancos Inverno e Primavera para previsões nas respectivas épocas do ano apresenta menores erros do que com banco de dados completo.

Palavras-chave: Energia solar. Aprendizagem de máquina. Irradiação global horizontal. *El Niño. La Niña*.

ABSTRACT

The introduction of solar energy in the Brazilian energy matrix is increasing annually, including in Ceará. In this context, issues related to the complementarity of supply are raised, since the solar source is intermittent. Irradiation forecasts can help decision making by the electric network driver, avoid power outages and reduce the variation of this matrix. Proper planning can be facilitated by predicting irradiation using machine learning methods. The present work analyzed the performance of 4 models of global horizontal irradiation prediction - neural networks, Boosting, Bagging and persistence model - for a city of Fortaleza, Ceará, in eight different time horizons, analyzing the influence of El Niño and La Niña, in the form of the Oceanic Niño Index, ONI, predictor, in these circumstances. In addition to ONI, meteorological information (ambient temperature, relative temperature, air speed, wind direction and precipitation level), irradiation and time data and information acquisition data were used. The performance of the models is evaluated considering three situations: the complete database, the database subdivided between the years with the occurrence of La Niña and the years with the occurrence of El Niño (database La Niña and database El Niño), and the database subdivided between the seasons (database Winter, database Summer, database Spring and database Autumn). Cross-validation 5-fold is applied, as well as selection of parameters for neural networks, Boosting and Bagging. The calculation of the global horizontal irradiation variability allows the classification of this predictor as having low variability. The results point to a reduction in RMSE between 0.11% to 2.2% when the ONI predictor is added to the complete database. The database El Niño obtains nRMSE between 0.03% to 1.3% higher than the database La Niña. There is a reduction of up to 5.7% in the nRMSE due to the addition of ONI in the database subdivided by stations. Boosting has the smallest errors among the models considered, and Bagging is the model least sensitive to the presence of ONI, presenting zero variation of nRMSE in six time horizons due to the addition of this predictor. The use of the Winter and Spring databases for forecasts at the respectives times of the year presents fewer errors than with a complete database.

Keywords: Solar energy. Machine Learning. Global Horizontal Irradiation. El Niño. La Niña.

LISTA DE FIGURAS

Figura 1	- Representação da validação cruzada 4-folds	21
Figura 2	- Esquema de redes neurais	23
Figura 3	- Fluxograma da Metodologia	24
Figura 4	- Piranômetro Kipp & Zonen CM 11, utilizado para aquisição de dados	25

LISTA DE GRÁFICOS

Gráfico 1	- Variação intra-anual da radiação solar média incidente na superfície de	
	Fortaleza entre janeiro de 1998 e dezembro de 2017	14
Gráfico 2	- Variação do RMSE (em W/m²) em função da presença da variável ONI \dots	32
Gráfico 3	- Comparação das Habilidades de Previsão, FS	33
Gráfico 4	- Comparação entre os valores de RMSE, em W/m ² , com ONI	34
Gráfico 5	- Comparação entre os valores de RMSE, em W/m², sem ONI	34
Gráfico 6	- Valores de nRMSE para a Persistência	37
Gráfico 7	- Valores de nRMSE para as Redes Neurais	37
Gráfico 8	- Valores de nRMSE para o <i>Boosting</i>	37
Gráfico 9	- Valores de nRMSE para o <i>Bagging</i>	37
Gráfico 10	- Variação do nRMSE para as Redes Neurais	38
Gráfico 11	- Variação do nRMSE para o <i>Boosting</i>	38
Gráfico 12	- Variação do nRMSE para o <i>Bagging</i>	38
Gráfico 13	- Valores de nRMSE para a previsão da irradiação nos bancos de dados	
	Verão, Primavera, Inverno e Outono, com o ONI	44
Gráfico 14	- Valores de nRMSE para a previsão da irradiação nos bancos de dados	
	Verão, Primavera, Inverno e Outono, sem o ONI	45

LISTA DE TABELAS

Tabela 1	- Preditores utilizados em trabalhos de previsão da irradiação	17
Tabela 2	- Categorias do ONI	18
Tabela 3	- Resultados dos modelos de previsão com o preditor ONI	30
Tabela 4	- Resultados dos modelos de previsão sem o preditor ONI	31
Tabela 5	- Resultados do banco de dados da La Niña	35
Tabela 6	- Resultados do banco de dados do <i>El Niño</i>	36
Tabela 7	- Resultados do banco de dados Verão	40
Tabela 8	- Resultados do banco de dados Primavera	41
Tabela 9	- Resultados do banco de dados Inverno	42
Tabela 10	- Resultados do banco de dados Outono	43

LISTA DE ABREVIATURAS E SIGLAS

ENOS	El Niño Oscilação Sul										
NOOA	ational Oceanic and Atmospheric Administration										
WMO	orld Meteorological Organization										
ONI	Oceanic Niño Index (índice Niño Oceânico)										
ANN	Artificial Neural Network (Redes Neurais Artificiais)										
BO	Boosting										
BA	Bagging										
KNN	k-Nearest Neighbors										
GB	Gradient Boosting										
CV	Conjunto de validação										
СТ	Conjunto de teste										
RMSE	Root Mean Square Error (Raiz do Erro Quadrático Médio)										
nRMSE	Normalized Root Mean Square Error (Raiz do Erro Quadrático Médio										
	Normalizado)										
MAE	Mean Absolute Error (Erro Médio Absoluto)										
nMAE	Normalized Mean Absolute Error (Erro Médio Absoluto Normalizado)										
FS	Forecast Skill (Habilidade de Previsão)										
GHI	Global Horizontal Irradiation (Irradiação Global Horizontal)										
ZCIT	Zona de Convergência Intertropical										
Kt	Índice de Claridade										

SUMÁRIO

1	INTRODUÇÃO	14
2	FUNDAMENTAÇÃO TEÓRICA	16
2.1	Preditores	17
2.1.1	Oceanic Niño Index (ONI)	18
2.1.2	Temperatura ambiente	18
2.1.3	Umidade relativa	19
2.1.4	Velocidade do vento	19
2.1.5	Direção do vento	19
2.1.6	Precipitação	19
2.1.7	Irradiação solar	19
2.2	Modelo de Índice de Claridade	20
2.3	Validação Cruzada k-fold	20
2.4	Modelos Aplicados	21
2.4.1	Árvores de regressão com procedimento de Boosting	21
2.4.2	Árvores de regressão com procedimento de Bagging	22
2.4.3	Artificial Neural Network	22
2.4.4	Persistência "inteligente"	23
3	METODOLOGIA	24
3.1	Aquisição de dados	24
3.2	Preditores e Pré-processamento dos dados	25
3.3	Bancos de dados	26
3.4	Validação cruzada	26
3.5	Métricas de erro	27
3.5.1	RMSE (Root Mean Square Error)	27
3.5.2	nRMSE (Normalized Root Mean Square Error)	27
3.5.3	MAE (Mean Absolute Error)	27
3.5.4	nMAE (Normalized Mean Absolute Error)	28
3.5.5	FS (Forecast Skill)	28
3.6	Variabilidade dos dados	28

4	RESULTADOS	29
4.1	Banco de dados completo	29
4.2	Bancos de dados El Niño e La Niña	34
4.3	Bancos de dados Verão, Primavera, Inverno e Outono	38
5	CONCLUSÃO	46
	REFERÊNCIAS	47

1 INTRODUÇÃO

A participação da energia solar na matriz energética brasileira tem crescido a cada ano e, conforme dados do Relatório Síntese do Balanço Energético Nacional (2019), apresentou crescimento de 316,1% na geração entre os anos de 2017 e 2018, apesar de representar apenas 0,5% da matriz energética. Quando se trata de mini e microgeração, todavia, essa fonte corresponde a 63,5% da geração, mostrando ainda tendência de aumento.

O estado do Ceará, na região Nordeste do Brasil, se destaca na geração de energia por fontes renováveis, dentre as quais a solar. A região é favorecida com altos índices de incidência solar, conforme o Atlas Eólico e Solar do Ceará (2019). A geração fotovoltaica na região representa uma alternativa ao fornecimento oriundo de geração hidrelétrica, que é bastante afetada pelos períodos de escassez de chuvas, e que geralmente acarretam aumento na tarifa de energia.

No Ceará, os níveis de irradiação durante o ano têm valores mais elevados durante o mês de outubro, chegando a valores máximos de 7 a 8 kWh/m²/dia, com menor dispersão dos dados durante o segundo semestre do ano, conforme indicado no Gráfico 1.

Gráfico 1 – Variação intra-anual da radiação solar média incidente na superfície de Fortaleza entre janeiro de 1998 e dezembro de 2017.

Fonte: Atlas Eólico e Solar do Ceará (2019).

A crescente produção de energia solar, e a consequente incorporação desta a uma rede elétrica, traz consigo questões relativas à complementariedade de abastecimento, uma vez que a fonte solar é intermitente, segundo Notton *et al.* (2018). Nesse cenário, a capacidade de prever confiavelmente a intensidade da irradiação para minutos, horas e dias subsequentes

se torna conveniente. Métodos de aprendizagem de máquina podem ser utilizados com essa finalidade.

Melhorar a precisão das previsões pode aumentar a competitividade da matriz energética solar no mercado de energia, segundo Tato e Brito (2018), uma vez que facilita o gerenciamento da rede elétrica e reduz os custos de produção de energia dessa matriz, conforme Kumler *et al.* (2019).

Previsões com erros reduzidos requerem, dentre outros fatores, uma adequada seleção de preditores. Conforme Mohammadi *et al.* (2018), informações meteorológicas tais como velocidade do vento e nível de precipitação estão relacionados com a intensidade de irradiação. Fenômenos como *El Niño* e *La Niña* alteram os regimes de chuva e vento em escala global, segundo Kayano *et al.* (2016), podendo, desse modo, influir na irradiação.

A presente dissertação tem como objetivo avaliar a influência dos fenômenos *El Niño* e *La Niña*, na forma do preditor ONI (*The Oceanic Niño Index*), na previsão da irradiação global horizontal na cidade de Fortaleza, Ceará, em diferentes horizontes de tempo, utilizando modelos de árvores de regressão com *Boosting* e com *Bagging*, uma rede neural perceptron (ANN) e um modelo de persistência. Os objetivos específicos são:

• Implementar e comparar o desempenho de 4 modelos de previsão da irradiação solar global horizontal;

• Avaliar a sensibilidade da previsão à presença do preditor Oceanic Niño Index, ONI;

• Comparar o desempenho de previsão entre os anos com ocorrência de *El Niño* e de *La Niña*;

Comparar o desempenho de previsão entre as quatro estações do ano.

Na seção fundamentação teórica são abordados os principais conceitos relativos ao trabalho, o estado da arte da previsão da irradiação, os preditores utilizados e os modelos aplicados. Na seção metodologia são explicadas as etapas de desenvolvimento do trabalho, as abordagens de separação do banco de dados, como foi realizada a aquisição e o tratamento dos dados e as métricas de erro adotadas.

Na seção resultados e discussão são apresentados os principais resultados obtidos para as três configurações de bancos de dados consideradas nessa dissertação, bem como é apontado o banco de dados mais adequado para fins de previsão da irradiação de acordo com o período do ano.

2 FUNDAMENTAÇÃO TEÓRICA

Modelos de aprendizagem de máquinas têm sido amplamente utilizados para fins de previsão de irradiação, conforme verificado em Notton *et al.* (2018), Benali *et al.* (2019), Fouilloy *et al.* (2018), Pazikadin *et al.* (2020). Tais previsões podem ser realizadas em horizontes intra-horários (de minutos até 2h), intra-diários (de 1h até 6h) e diários (de 1 a 3 dias posteriores), tendo cada um desses horizontes de previsão finalidades distintas. Previsões intra-horárias são úteis à segurança de fornecimento de energia elétrica à rede e previsões diárias e mensais auxiliam os processos de otimização e o gerenciamento do consumo de energia. Conforme Voyant *et al.* (2017), as Rede Neurais Artificiais (ANNs) são o método mais aplicado em trabalhos de previsão da irradiação global desde o ano 2000, seguido dos modelos de aprendizagem de máquinas.

A escolha do modelo que mais se adequa à situação de previsão está relacionada ao horizonte temporal. Conforme Sobri *et al.* (2018), o modelo de persistência é adequado para horizontes intra-horários de até 10 min e o modelo de redes neurais é adequado para horizontes intra-diários, com previsões para até 10h.

Em alguns trabalhos é explorada a análise do erro de previsão por estações do ano, para cada horizonte e modelo, a fim de avaliar a influência da sazonalidade da irradiação. Em Benali *et al.* (2019) são realizadas previsões para a irradiação solar considerando os modelos de persistência, redes neurais e *Random Forests*, para os horizontes horários de 1h até 6h, avaliando os erros nas quatro estações. São utilizados dados coletados na cidade francesa Odelio. Nesse trabalho, para o modelo de redes neurais, os valores de nRMSE da previsão da irradiação global são de 22,57%, 28,08% e 34,85% para os horizontes de previsão de 1h, 2h e 6h. Em Lan *et al.* (2018) são realizadas previsão espaço-temporais. São utilizados dados de 9 pontos de coleta ao longo da costa da China. Em ambos os trabalhos observa-se que os menores valores de erro de previsão são obtidos para as estações do ano nas quais há menor variabilidade da irradiação (variável predita).

O Atlas solarimétrico do Ceará (2011) aponta que modelagens numéricas para fins de simulação ou previsão de condições atmosféricas para a região do Ceará entre os anos de 1963 a 2008 apresentam maior confiabilidade, isto é, menores erros, para as datas nas quais é registrada a ocorrência do fenômeno *El Niño* de intensidade elevada, todavia, para datas com ocorrência de *La Niña*, são verificados maiores erros. Esse comportamento é atribuído ao fato do *El Niño* modificar a circulação de ar no pacífico (Circulação de Walker), gerando uma corrente de ar descendente sobre a região nordeste do Brasil (zona de alta pressão), que inibe a formação de nuvens e reduz as chuvas na região. Essas alterações afetam diretamente os níveis de radiação.

Variações anuais da irradiação solar e dos índices de precipitação e nebulosidade também são apontadas no Atlas Solarimétrico do Ceará (2011), que salienta a ocorrência de menores índices de radiação entre os meses de dezembro a maio devido à influência da Zona de Convergência Intertropical (ZCIT), que aumenta os níveis de precipitação e nebulosidade. O período entre dezembro e maio compreende, no hemisfério sul, o verão e parte do outono.

Desse modo a presente dissertação aplica os métodos de aprendizagem de máquinas para previsão da irradiação global horizontal utilizando dados da cidade de Fortaleza, uma região pouco explorada na literatura para essa finalidade, considerando, ainda, o preditor Oceanic Niño Index, relativo à intensidade do El Niño.

2.1 Preditores

Em trabalhos publicados entre os anos de 2014 e 2019, que tratam da previsão da irradiação global, conforme Pazikadin *et al.* (2020), são preditores recorrentes: irradiação solar, temperatura ambiente, umidade relativa do ar, velocidade do vento, direção do vento, precipitação e nebulosidade. A Tabela 1 apresenta alguns desses trabalhos e os respectivos preditores utilizados.

Preditores utilizados	Trabalho
Irradiação global, temperatura e umidade ambientes, velocidade e direção do vento, precipitação, pressão atmosférica	Notton <i>et al.</i> (2019)
Temperaturas máxima, mínima, média e de orvalho; precipitação, pressão atmosférica, velocidade do vento e radiação global	Srivastava <i>et al.</i> (2018)
Irradiação global, radiação difusa, temperatura do ar, umidade relativa	Jumaat et al. (2017)
Irradiação global, temperatura ambiente, umidade relativa, velocidade e direção do vento	Gutierrez-Correa et al. (2016)
Nebulosidade, umidade relativa e temperatura ambiente	Royer et al. (2016)
Fonte: elaborada pela au	itora.

Tabela 1 – Preditores utilizados em trabalhos de previsão da irradiação.

Desse modo as referências indicam que as informações meteorológicas são

preditores adequados para fins de previsão da irradiação global.

2.1.1 Oceanic Niño Index (ONI)

O *El Niño* e a *La Niña* são alterações na temperatura superficial do Oceano Pacífico, na região próxima à Linha do Equador. O *El Niño* caracteriza-se pelo aquecimento e a *La Niña* pelo resfriamento anormais (em relação à média histórica); ambos os eventos compõem o fenômeno denominado de El Niño Oscilação Sul (ENOS).

Esses eventos são classificados conforme sua intensidade pelo ONI (*The Oceanic Niño Index*), que avalia a intensidade do *El Niño* e da *La Niña*, variando de -4 (*La Niña* forte) a 4 (*El Niño* forte), conforme indicado na Tabela 2. Essa informação é obtida através do *National Oceanic and Atmospheric Administration* (NOOA), órgão do governo estadunidense. Desse modo o ONI demonstra-se uma variável quantitativa relacionada ao ENOS que pode ser utilizada para fins de previsão.

Valores de ONI									
	El Niño		La Niña						
ONI	Classificação	ONI	Classificação						
4	<i>El niño</i> bastante forte	-4	<i>La niña</i> bastante forte						
3	El niño forte	-3	La niña forte						
2	El niño moderado	-2	La niña moderada						
1	El niño fraco	-1	La niña fraca						
0	Ausência dos eventos	-	-						

Tabela 2 - Categorias do ONI.

Fonte: National Oceanic and Atmospheric Administration (NOOA).

O índice é calculado com base na diferença de pressão entre as cidades de Taiti, na Polinésia Francesa e Darwin, na Austrália, e na variação da temperatura em quatro zonas de medição ao longo do oceano pacífico equatorial (*Niño* 1+2, *Niño* 3, *Niño* 3,4, *Niño* 4). O índice é obtido para cada mês, todavia só é feita a mudança na classificação de intensidade após 5 meses de recorrência de valores superiores a 0,5°C (para mais ou para menos).

2.1.2 Temperatura ambiente

É a quantificação do movimento aleatório das moléculas de ar. É dada em °C. No Ceará, o valor médio da temperatura ambiente é de 26,5°, apresentando maiores valores na planície litorânea durante a primavera, conforme o Atlas Eólico e Solar do Ceará (2019).

2.1.3 Umidade relativa

É a razão entre a quantidade de água existente no ar e a quantidade máxima de água que poderia haver no ponto de saturação, para as mesmas condições de temperatura e pressão.

2.1.4 Velocidade do vento

É a quantificação escalar do movimento de massas de ar devido a gradientes de pressão horizontais ou verticais. É dada em m/s. No Ceará, as maiores velocidades do vento são verificadas durante os meses de setembro a dezembro, conforme o Atlas Eólico e Solar do Ceará (2019).

2.1.5 Direção do vento

É o ângulo horizontal entre o vetor fluxo atmosférico e o norte geográfico.

2.1.6 Precipitação

É a quantificação das chuvas em uma dada região para um determinado período de tempo. Esse parâmetro é dado em mm. No Ceará, os menores índices de precipitação acumulada são verificados durante a primavera (com precipitação média acumulada mensal menor do que 10 mm), enquanto os maiores índices acontecem nos meses de março e abril, conforme o Atlas Eólico e Solar do Ceará (2019).

2.1.7. Irradiação solar

A irradiação global horizontal, GHI, conforme o Atlas Eólico e Solar do Ceará

(2019), é a radiação total incidente em uma unidade de área, isto é, a soma da irradiância normal direta e da irradiância difusa horizontal. Geralmente a GHI é avaliada para fins de caracterização do recurso para projetos de aproveitamento solar, é dada em W/m². Sendo a irradiância um fluxo instantâneo de energia por unidade de área e a irradiação a taxa de incidência de radiação por unidade de área, conforme Incropera *et al.* (2008).

2.2 Modelo de Índice de Claridade

Os dados de irradiação possuem variações sazonais, anuais e diárias, desse modo, utiliza-se o modelo de índice de claridade (a razão entre a irradiação medida e a irradiação extraterrestre para um dado instante e lugar), Kt, conforme proposto por Iqbal (1983), para transformar esses preditores em uma série estacionária. Esse índice é calculado conforme a Equação 7 e a Equação 8.

$$K_t = \frac{H}{H_o} \tag{7}$$

$$H_o = \frac{24}{\pi} G_{SC} [1+0,033\cos(\frac{360}{365}n)] (\cos\phi\cos\gamma\,senw_s + \frac{\pi W_s}{180}\,sen\phi\,sen\gamma)$$
(8)

Onde G_{SC} é a constante solar, cujo valor considerado foi de 1367 W/m², ϕ é a latitude do local considerado, em radianos, γ é o ângulo de declinação solar ao meio-dia em relação à linha do Equador, em radianos, W_s é o ângulo do pôr do Sol, em radianos, n é o dia do ano no calendário juliano, H é a irradiação medida na Terra, em W/m², e H_o é a irradiação extraterrestre, em W/m².

2.3 Validação Cruzada k-fold

Trata-se de um método de reamostragem que visa melhorar a capacidade de generalização de um modelo. Consiste em separar o banco de treinamento em k subconjuntos disjuntos e aleatórios. Em cada k rodadas um subconjunto diferente será o conjunto de validação (CV) e os k-1 restantes serão os de treino (CT). Após k rodadas, onde todos os subconjuntos terão sido, ao menos uma vez, o subconjunto de validação, é calculada a média dos erros quadráticos médios de cada subconjunto de teste.

O processo de validação cruzada está representado na Figura 1, para o caso específico de k=4. O valor de k é um parâmetro livre, entretanto não são recomendados valores muito pequenos ou muito grandes. Na literatura, os valores para k de 5 e 10 são comumente encontrados, como em Noton *et al.* (2019), Fouilloy *et al.* (2018), Voyant *et al.*

Figura 1 – Representação da validação cruzada 4-fold.

Fonte: elaborada pela autora.

2.4 Modelos Aplicados

2.4.1 Árvores de regressão com procedimento de Boosting

Consiste em um modelo *Ensemble*, isto é, um conjunto de classificadores individualmente treinados cujas decisões são combinadas conforme Marqués *et al.* (2012). Inicialmente era aplicado em problemas de classificação, mas por meio de adaptações no algoritmo, que resultaram na obtenção do método de *Boosting* Adaptativo (*Adaboost*), tem-se a possibilidade de utilização em problemas de regressão.

Esse modelo utiliza-se de uma função de perda que, para cada linha de treinamento do banco de dados, calcula um erro de previsão. A função utilizada pode ser linear, quadrática ou exponencial, podendo ser alterada para cada iteração. O erro obtido para cada linha é ponderado por um peso, D_t , que é maior para erros maiores e menor para erros menores. A cada iteração a distribuição de pesos é atualizada por meio da Equação 3, a qual utiliza o fator de confiabilidade β_t , da Equação 2 que é calculado com base na função de perda total, L_t , Equação 1, que é a soma dos erros de cada linha, ponderados pelos respectivos pesos da última iteração.

$$\overline{L}_{t} = \sum_{i=1}^{N} \left(L_{t}(i) D_{t}(i) \right)$$
(1)

22

$$\beta_t = \frac{\overline{L_t}}{1 - \overline{L_t}} \tag{2}$$

$$D_{t+1}(i) = \frac{D_t(i)\beta_t^{(1-L_t(i))}}{Z_t}$$
(3)

Onde Z_t é um fator de normalização.

Ao final de cada iteração uma hipótese fraca é gerada. A hipótese final é calculada pelo somatório das hipóteses fracas ponderadas por seus respectivos fatores de confiabilidade. Organizam-se os valores das hipóteses fracas em ordem crescente, bem como os fatores de confiabilidade. Quando a relação da Equação 4 é atingida, considera-se o $f_t(x)$ correspondente ao β_t da última soma como a hipótese final.

$$f_{final}(x) = \inf\left[y \in Y : \sum_{t} \log \frac{1}{\beta_t} \ge \frac{1}{2} \sum_{t} \log \frac{1}{\beta_t}\right]$$
(4)

2.4.2 Árvores de regressão com procedimento de Bagging

Trata-se, também, de um modelo *Ensemble*, aplicado usualmente para aumentar a acurácia de modelos de árvores de decisão. Esse procedimento, de *Bootstrap Aggregation*, consiste em aumentar a acurácia da previsão final utilizando a média das predições de várias árvores. Geram-se N conjuntos de observações (*Bootstrapped*), os quais, individualmente, treinam o modelo e geram uma predição. A média dessas predições é então calculada (*Bagging*), conforme a Equação 5.

$$\hat{h_{bag}}(x) = \frac{1}{N} \sum_{n=1}^{N} \hat{h^{n}}(x)$$
(5)

Na qual $\hat{h}^n(x)$ é um modelo de árvore de regressão para o n-ésimo conjunto de *bootstrap*.

Esse modelo, assim como o *Boosting*, proporciona uma progressiva redução do erro no conjunto de treinamento, por isso é utilizado com outros métodos a fim de melhorar o desempenho destes, conforme apontado por Voyant *et al.* (2017) e Fouilloy *et al.* (2018).

2.4.3 Redes Neurais Artificiais

Perceptron de Múltiplas Camadas é o tipo de redes neurais utilizada na presente dissertação, possuindo 3 camadas, entrada, intermediária ou oculta e saída. O método é baseado nas transmissões de impulsos nervosos entre neurônios no corpo humano, conforme Pazikadin *et al.* (2020). Caracteriza-se pela presença de neurônios, ou nós, que ao receberem as informações de neurônios anteriores, lhes atribuem pesos distintos e posteriormente as

somam. Esse somatório passa por uma função de ativação linear, que normaliza a resposta, transmitindo a saída. As funções de ativação utilizadas podem variar de acordo com a adequação destas aos dados em estudo, conforme sugerido por Inman *et al.* (2013). O funcionamento de uma rede neural está esquematizado na Figura 2.

Fonte: elaborada pela autora.

Na presente dissertação avalia-se o número de neurônios da camada intermediária, a fim de encontrar o valor que proporciona menor erro.

2.4.4 Persistência "inteligente"

Consiste de um modelo para servir de referência de performance para os demais métodos. Espera-se que o modelo de persistência apresente erro maior do que os demais modelos. Nele considera-se que o Índice de Claridade, Kt, do instante atual é igual ao do instante anterior, conforme a Equação 6.

$$Kt_t = Kt_{t-\Lambda t} \tag{6}$$

Esse modelo, também chamado de *Smart Persistence,* se difere do modelo de persistência convencional por considerar os valores de índice de claridade, e não de irradiação.

3 METODOLOGIA

Nesta dissertação utiliza-se um conjunto de dados com variáveis meteorológicas e temporais para estimar a irradiação solar aplicando modelos de aprendizagem de máquinas supervisionados. São consideradas separadamente 14 situações para obtenção de resultados: o banco de dados completo (com e sem o ONI), o banco de dados subdividido entre os anos com ocorrência de *El Niño* (com e sem o ONI) e os com ocorrência de *La Niña* (com e sem o ONI) e o banco de dados subdividido entre cada uma das quatro estações do ano: primavera (de setembro a dezembro), verão (de dezembro a março), outono (de março a junho) e inverno (de junho a setembro), com e sem o ONI.

Os modelos são validados com a separação dos dados entre os grupos de treinamento (com validação cruzada) e teste. Os modelos são implementados na linguagem de programação R, no ambiente de desenvolvimento RStudio.

Estão esquematizadas na Figura 3 as etapas da metodologia da dissertação.

Fonte: elaborada pela autora.

3.1 Aquisição de dados

Os dados são coletados na cidade de Fortaleza, Ceará, 3° 43' 2"S, 38° 32' 35" O, com altitude média de 21m (utiliza-se a série histórica referente aos anos de 2007 a 2019). Os preditores meteorológicos são obtidos por meio da Fundação Cearense de Meteorologia e Recursos Hídricos, Funceme, e os dados de irradiação solar global são coletados pelo Laboratório de Energia Solar e Gás Natural, LESGN, da Universidade Federal do Ceará, por um piranômetro Kipp & Zonen, modelo CM 11, com sensibilidade de 4,78.10⁻⁶ V/W.m⁻²,

conforme indicado na Figura 4. Esse modelo de instrumento é classificado pela WMO como padrão secundário (segunda classe).

Figura 4 – Piranômetro Kipp & Zonen CM 11, utilizado para aquisição de dados.

Fonte: elaborada pela autora.

O sistema de aquisição possui resolução de 2s, todavia os valores disponíveis para previsão correspondem à média dos 60 valores tomados a cada 2s no intervalo de 2 min.

3.2 Preditores e Pré-processamento dos dados

São considerados no trabalho 25 preditores, a saber: ano, dia juliano e hora da aquisição, temperatura (°C) e umidade do ar (%), velocidade (m/s) e direção do vento (graus), precipitação (mm), ONI e irradiação global horizontal de 16 instantes anteriores (tomados a cada 2 min).

As 16 variáveis de irradiação são modificadas conforme o modelo de Índice de Claridade. Desse modo, para a execução dos 4 modelos de previsão, são considerados os valores de Kt.

O dia do ano também é modificado a fim de reduzir a sua amplitude de valores, conforme sugerido por Zhu *el al.* (2019). Foi calculado pela Equação 9.

$$Dia \, do \, ano = \cos\left(\frac{2\,\pi \left(DOY - 15\right)}{365}\right) \tag{9}$$

Onde DOY é o respectivo dia do ano no calendário juliano.

3.3 Bancos de dados

Na presente dissertação o banco de dados contempla os 25 preditores já mencionados e 620000 observações. Para a obtenção dos resultados considera-se, além do banco de dados completo, uma primeira subdivisão deste em dois grupos: um composto pelas observações de anos em que houve *El Niño* (banco *El Niño*) e o outro pelas observações de anos em que houve *La Niña* (banco *La Niña*), bem como uma segunda subdivisão deste em 4 subgrupos referente a ocorrência de cada uma das quatro estações (bancos Verão, Primavera, Inverno e Outono). Para cada um dos 7 bancos mencionados considera-se 2 condições: com e sem o ONI.

Nas previsões referentes ao banco de dados completo é escolhido aleatoriamente 50% do banco de dados, isto é, 310000 observações, as quais são efetivamente utilizadas no modelo de previsão. Esse procedimento é adotado a fim de reduzir o volume computacional de cálculos e, consequentemente, o tempo de execução.

Foram realizados 10 testes (a cada um somando-se 10% do banco de dados) a fim de encontrar a porcentagem do banco de dados a ser utilizada. Verificou-se que a partir de 50% não havia diferença significativa nos valores de RMSE e nRMSE. Esse procedimento foi realizado a fim de permitir a redução do tempo de execução computacional sem afetar a precisão dos modelos.

Nas previsões referentes aos bancos *Niña* (258000 observações) e *Niño* (330700 observações), conserva-se o número de observações do banco *La Niña* e escolhe-se aleatoriamente do banco *El Niño* o número de observações correspondente ao banco *Niña*, a fim de possibilitar comparações entre os resultados obtidos pelas previsões de cada um desses bancos.

Nas previsões referentes aos bancos subdivididos pelas estações do ano, Primavera (122361 observações), Verão (111650 observações), Outono (139650 observações) e Inverno (138603 observações), conserva-se o número de observações do banco Verão e escolhe-se aleatoriamente de cada um dos três bancos restantes o número de observações correspondentes ao banco Verão.

3.4 Validação Cruzada

Para os quatro modelos considerados, exceto o de persistência, é destinado 20% do banco de dados ao teste e 80% ao treino, tomados aleatoriamente. Nos dados de treino utilizase validação cruzada 5-fold. Esse procedimento é realizado em todos os bancos de dados considerados.

3.5 Métricas de erro

São utilizadas para comparar os modelos e avaliar a adequação destes ao banco de dados trabalhado e ao problema em estudo.

3.5.1 RMSE (Root Mean Square Error)

A Raiz do Erro Quadrático Médio é um importante parâmetro de avaliação do ajuste de um modelo. É dado na mesma unidade da variável predita e é calculado pela Equação 10. Nele os erros individuais são ponderados diferentemente, sendo os erros maiores ponderados por pesos maiores.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (\hat{GHI} - GHI)^2}{N}}$$
(10)

Onde, \hat{GHI} é o valor estimado de GHI, previsto pelo modelo considerado.

3.5.2 nRMSE (Normalized Root Mean Square Error)

A Raiz do Erro Quadrático Médio Normalizado é a razão entre o RMSE e a média dos valores reais da variável. É obtido na forma de porcentagem. Essa métrica de erro fornece faixas de classificação para a previsão, a saber: % nRMSE < 10% excelente, 10% < % nRMSE < 20% bom, 20% < % nRMSE < 30% razoável e % nRMSE ≥ 30% ruim, conforme sugerido por Li *et al.* (2013). É calculada pela Equação 11.

$$nRMSE = \frac{RMSE}{\overline{GHI}}$$
(11)

Onde, \overline{GHI} é o valor médio da variável GHI.

3.5.3 MAE (Mean Absolute Error)

O erro médio absoluto é a média do valor absoluto da diferença entre o valor predito e o valor real. Nesta métrica os erros individuais são ponderados igualmente pela média, diferentemente do RMSE. É obtido pela Equação 12.

$$MAE = \frac{\sum_{i=1}^{N} |GHI - GHI|}{N}$$
(12)

3.5.4 nMAE (Normalized Mean Absolute Error)

O Erro Absoluto Médio Normalizado é a razão entre o MAE e a média dos valores reais da variável, calculado pela Equação 13.

$$nMAE = \frac{MAE}{\overline{GHI}}$$
(13)

3.5.5 FS (Forecast Skill)

A Habilidade de Previsão é a razão entre o RMSE de um determinado modelo e o RMSE do modelo de persistência, servindo como um indicador de performance de um modelo em relação à persistência, segundo Marquez e Coimbra (2013). Quanto maior for o seu valor (variando entre -1 e 1), melhor é o desempenho do modelo considerado. É calculado conforme a Equação 14.

$$FS = 1 - \frac{RMSE_{modelo\,x}}{RMSE_{persistência}} \tag{14}$$

3.6 Variabilidade dos dados

Conforme proposto por Voyant *et al.* (2015), a variabilidade do índice de claridade, P, é calculada pela Equação 15. A variabilidade pode ser classificada nas seguintes categorias: forte para P > 0,4, média para 0,2 < P < 0,4 e fraca para P < 0,2, conforme sugerido por Fouilloy *et al.* (2018).

$$P = \frac{\sum_{i=1}^{N} |\log(Kt(i)) - \log(Kt(i-1))|}{N}$$
(15)

Onde N é a quantidade de observações disponíveis.

A variabilidade dos dados de irradiação é avaliada a fim de proporcionar uma comparação adequada com outros trabalhos já publicados. Em Fouilloy *et al.* (2018) é apontado que cidades com diferentes classificações de variabilidade dos dados de índice de claridade apresentam faixas de erro de previsão distintas, uma vez que a variabilidade está fortemente ligada às condições climáticas e à dinâmica meteorológica, conforme Pazikadin *et al.* (2020).

4 RESULTADOS

No cálculo da variabilidade do preditor índice de claridade, Kt, para o banco de dados completo, obtém-se o valor de 0,1377, que o classifica como de fraca variabilidade, conforme Fouilloy *et al.* (2018). Para os dois bancos de dados referentes aos anos com ocorrência de *El Niño* e *La Niña* também se verifica variabilidade fraca para o índice de claridade, com valores de 0,1345 e 0,1437, respectivamente.

Para os bancos verão, primavera, inverno e outono também se verifica baixa variabilidade do Kt, com valores de, respectivamente, 0,1646, 0,1407, 0,0897 e 0,1609.

4.1 Banco de dados completo

Os resultados dos modelos de persistência, redes neurais, *boosting* e *bagging* em oito horizontes temporais estão indicados na Tabela 3, com a presença da variável ONI, e na Tabela 4, sem a presença da variável ONI (com os valores de RMSE e MAE expressos em W/m²). Os menores valores de RMSE obtidos para cada horizonte temporal encontram-se destacados.

À exceção dos horizontes de 2 min, 1h, 1 dia e 7 dias para as redes neurais e o horizonte de 7 dias para o *Boosting* e o *Bagging*, observa-se que a presença do ONI como preditor reduz entre 0,11% a 2,2% o RMSE para os demais horizontes e modelos. O melhor desempenho em razão da adição do preditor ONI é esperado, uma vez que, segundo o Atlas Solarimétrico do Ceará (2011), a qualidade da estação chuvosa (índice pluviométrico maior ou menor) no setor norte da região nordeste (no qual se inclui o Ceará) está fortemente influenciada pela presença do fenômeno *El Niño* (cuja influência é considerada nesta dissertação na forma do preditor ONI).

O modelo que apresenta os menores valores de RMSE para os horizontes temporais de 10 min, 30 min, 1h, 2h, 6h, 1 dia e 7 dias é o de árvores de regressão aplicando o método de *Boosting*. As redes neurais obtêm menor valor de RMSE para o horizonte de 2 min. Os modelos redes neurais, boosting e bagging apresentam RMSE inferiores aos do modelo de persistência nos oito horizontes considerados.

Modelo	Métrica de erro	Horizonte Temporal							
		t+2min	t+10min	t+30min	t+1h	t+2h	t+6h	t+1dia	t+7dias
Persis-	RMSE	129,4327	199,9018	245,9796	283,8634	322,2291	350,5289	358,3758	348,7032
	nRMSE	0,2200	0,3399	0,4181	0,4826	0,5482	0,5958	0,6090	0,5907
tência	MAE	69,7760	117,6239	161,7311	203,8687	254,3976	290,1071	295,1745	278,2778
	nMAE	0,1186	0,2000	0,2749	0,3466	0,4328	0,4931	0,5016	0,4714
	RMSE	114,3126	154,4990	171,1444	185,1053	195,0891	202,2689	216,2024	237,8998
	nRMSE	0,1943	0,2627	0,2909	0,3147	0,3319	0,3438	0,3674	0,4030
Redes Neurais	MAE	67,5403	99,8985	117,6066	131,1089	141,3646	152,4371	166,7713	192,3859
iveuluis	nMAE	0,1148	0,1698	0,1999	0,2229	0,2405	0,2591	0,2834	0,3259
	FS	0,1168	0,2271	0,3042	0,3479	0,3945	0,4229	0,3967	0,3177
	RMSE	115,0250	153,2639	171,0855	181,9878	192,3264	201,5629	213,9074	235,1843
	nRMSE	0,1955	0,2606	0,2908	0,3094	0,3272	0,3426	0,3635	0,3984
Boosting	MAE	68,6588	99,6863	117,6066	129,4619	141,5997	152,9078	165,6532	190,6150
	nMAE	0,1167	0,1695	0,1999	0,2201	0,2409	0,2599	0,2815	0,3229
	FS	0,1113	0,2333	0,3044	0,3588	0,4031	0,4249	0,4031	0,3255
	RMSE	129,3739	169,2627	185,5584	198,7514	206,0808	212,0941	222,4989	244,9837
	nRMSE	0,2199	0,2877	0,3154	0,3379	0,3506	0,3605	0,3781	0,4150
Bagging	MAE	85,8963	118,4898	135,0799	148,6372	159,5275	167,1455	175,4805	200,1192
	nMAE	0,1460	0,2014	0,2296	0,2527	0,2714	0,2841	0,2982	0,3390
	FS	0,0004	0,1532	0,2456	0,2998	0,3604	0,3949	0,3791	0,2974
		Fonte: elaborada pela autora.							

Tabela 3 - Resultados dos modelos de previsão com o preditor ONI.

Observa-se em ambas as tabelas, para os quatro modelos, que o maior aumento percentual do RMSE ocorre entre os horizontes de 2 min e 10 min, e que esse percentual de aumento é decrescente ao longo dos horizontes temporais (à exceção do horizonte de 7 dias para o modelo de persistência). Para o modelo de persistência (54,4%) tem-se o maior percentual de aumento, seguido de *Bagging* (30,8%), rede neural (35,1%) e *Boosting* (33,2%).

31

Modelo	Métrica de erro	Horizonte Temporal							
		t+2min	t+10min	t+30min	t+1h	t+2h	t+6h	t+1dia	t+7dias
	RMSE	129,4327	199,9018	245,9796	283,8634	322,2291	350,5289	358,3758	348,7032
Persis-	nRMSE	0,2200	0,3399	0,4181	0,4826	0,5482	0,5958	0,6090	0,5907
tência	MAE	69,7760	117,6239	161,7311	203,8687	254,3976	290,1071	295,1745	278,2778
	nMAE	0,1186	0,2000	0,2749	0,3466	0,4328	0,4931	0,5016	0,4714
Redes Neurais	RMSE	113,9008	155,0283	172,1445	184,7524	196,7349	202,7985	216,0258	236,5246
	nRMSE	0,1936	0,2636	0,2926	0,3141	0,3347	0,3447	0,3671	0,4004
	MAE	67,7168	99,9215	117,7831	130,7559	143,7746	152,4959	165,8885	190,0939
	nMAE	0,1151	0,1699	0,2002	0,2223	0,2446	0,2592	0,2819	0,3218
	FS	0,1199	0,2244	0,3001	0,3491	0,3894	0,4214	0,3972	0,3217
	RMSE	116,3129	153,4404	171,4974	183,1643	193,3257	202,2689	215,3785	229,9889
	nRMSE	0,1977	0,2609	0,2915	0,3114	0,3289	0,3438	0,3660	0,3985
Boosting	MAE	68,7758	99,6863	117,8419	130,0502	142,1288	153,4962	166,5359	291,4414
	nMAE	0,1169	0,1695	0,2003	0,2211	0,2418	0,2609	0,2830	0,3224
	FS	0,1013	0,2324	0,3028	0,3547	0,4000	0,4229	0,3990	0,3404
	RMSE	131,0212	169,2627	185,5584	198,7514	206,0808	212,0941	222,4989	244,3812
	nRMSE	0,2227	0,2877	0,3154	0,3379	0,3506	0,3605	0,3781	0,4137
Bagging	MAE	86,3669	118,4898	135,1387	148,6959	159,5275	167,1455	175,4805	199,6045
	nMAE	0,1468	0,2014	0,2297	0,2528	0,2714	0,2841	0,2982	0,3379
	FS	-0,0122	0,1532	0,2456	0,2998	0,3604	0,3949	0,3791	0,2991

Tabela 4 – Resultados dos modelos de previsão sem o preditor ONI.

Fonte: elaborada pela autora.

Os resultados exibidos nas Tabelas 3 e 4 podem ser comparados àqueles obtidos por Benali et al. (2019) e Fouilloy et al. (2018), uma vez que em ambos os trabalhos é realizada a previsão para a GHI, fazendo uso de preditores com informações meteorológicas e são utilizados os mesmos modelos de previsão considerados nesta dissertação.

Os valores de RMSE obtidos para os horizontes de 1h, 2h e 6h, com e sem a presença do ONI, são mais elevados do que aqueles encontrados por Benali et al. (2019) para a rede neural (1h-101,79 W/m², 2h-126,65 W/m², 6h-157,27 W/m²). Quanto aos valores de nRMSE (1h-22,57%, 2h-28,08%, 6h-34,85%), nota-se que para os horizontes de 1h, 2h e 6h os resultados obtidos são maiores do que os encontrados na literatura. Para o horizonte de 6h, todavia, o resultado obtido está mais próximo ao da literatura do que os demais horizontes.

Os valores de nRMSE, para o Boosting, o Bagging e as redes neurais, estão compatíveis com aqueles encontrados por Fouilloy et al. (2018), entretanto para o grupo de

dados no qual a variabilidade do Kt é alta (1h: BO-30,2%, BG-28,8%, ANN-29,9%; 2h: BO-43,2%, BG-42%, ANN-43,5%; 6h: BO-48,8%, BG-47,5%, ANN-48,7%). Quando se compara com o nRMSE dos dados de baixa variabilidade, todavia, verifica-se que os erros aqui obtidos são superiores entre 1,4% a 66,1% aos encontrados no supracitado trabalho (1h: BO-18,75%, BG-18,76%, ANN-18,2%; 2h: BO-29,5%, BG-29,8%, ANN-29,2%; 6h: BO-33,9%, BG-34%, ANN-33,8%).

Dos modelos em estudo observa-se que o *Bagging* demonstra menor sensibilidade à presença do preditor ONI, apresentando em 6 dos 8 horizontes temporais uma diferença nula entre valores de RMSE, conforme indicado no Gráfico 2, no qual está representada a variação do RMSE (em W/m²) entre as previsões com e sem o preditor ONI. As redes neurais e o *Boosting* têm variação do RMSE superior a verificada no *Bagging*, indicando maior sensibilidade desses modelos à presença do preditor ONI.

Observa-se que para as redes neurais, nos horizontes de 2 min, 1h, 1 dia e 7 dias (aumento do RMSE de 0,36%, 0,19%, 0,08% e 0,58%, respectivamente), bem como para o *Boosting* e o *Bagging* no horizonte de 7 dias (aumento do RMSE de 2,25% e 0,24%, respectivamente), a variação é negativa, o que indica que a presença do preditor ONI aumenta os valores de RMSE nesses casos. Para os demais horizontes no Boosting e no Bagging (à exceção de 7 dias) e para as redes neurais nos horizontes de 10 min, 30 min, 2h e 6h nota-se que a adição do ONI reduziu os valores de RMSE.

Gráfico 2 – Variação do RMSE (em W/m²) em função da presença da variável ONI.

Fonte: elaborada pela autora.

Comparando o FS dos modelos, como indicado no Gráfico 3, observa-se uma

tendência de crescimento até o horizonte de 6h, seguida de queda, fato também notado em Fouilloy et al. (2018). Esse comportamento indica que a diferença entre o RMSE dos modelos ANN, BO e BG e o modelo de persistência aumenta até o horizonte de 6h; a partir deste a diferença passa a diminuir, isto é, o desempenho dos modelos ANN, BO e BG tende a se aproximar do desempenho do modelo de persistência.

O aumento dos valores de FS verificado nos 6 primeiros horizontes se deve ao fato de, para horizontes de até 6 min, o modelo de persistência e a rede neural apresentarem desempenhos próximos, conforme sugerido em Sobri *et al.* (2018). A partir deste horizonte, para previsões intra-dia e para dias posteriores, as redes neurais e os modelos de árvores oferecem menores erros do que o modelo de persistência, e progressivamente mais distantes destes, conforme Tato e Brito (2018).

Gráfico 3 – Comparação das Habilidades de Previsão, FS.

Fonte: elaborado pela autora.

O distanciamento entre as performances dos modelos está evidenciada nos Gráficos 4 e 5, nos quais tem-se os valores de RMSE para os 4 modelos em todos os horizontes temporais considerados (representados em minutos). Observa-se o progressivo distanciamento do modelo de persistência em relação aos demais, bem como a proximidade de desempenho entre os modelos *Boosting* e redes neurais.

Gráfico 4 – Comparação entre os valores de Gráfico 5- Comparação entre os valores de RMSE, em W/m², com ONI. RMSE, em W/m², sem ONI. 2 400 400 10 10080 10 10080 300 300 200 100 30 1440 30 1440 60 260

Fonte: elaborado pela autora.

60

• • P

360

- BG

120 ANN

Nota-se, para os horizontes de 2 min e 10 min, em ambos os gráficos, que o desempenho dos 4 modelos considerados está próximo. A partir do horizonte de 30 min o modelo de persistência apresenta uma elevação do RMSE, que se segue crescente até o horizonte de 1 dia. Os modelos *Boosting, Bagging* e redes neurais apresentam desempenhos próximos em todos os horizontes, com elevação do erro mais pronunciada a partir do horizonte de 6h. É possível notar, entretanto, que o *Bagging* demonstra valores de RMSE maiores do que os apresentados pelos dois outros modelos, o que fica mais evidenciado entre os horizontes de 10 min e 6h.

4.2 Bancos de dados do El Niño e da La Niña

120

ANN

- BO

BG

Os resultados obtidos para os bancos separados conforme a ocorrência de *La Niña* e de *El Niño* são apresentados nas Tabelas 5 e 6 (com os valores de RMSE e MAE expressos em W/m²). Os menores valores de RMSE obtidos para cada horizonte temporal encontram-se destacados.

Os resultados dos bancos *La Niña* e *El Niño* apresentam tendências similares às dos resultados do banco de dados completo. Os erros crescem conforme o horizonte temporal aumenta (à exceção do horizonte de 7 dias para o modelo de persistência). Verifica-se melhor desempenho do *Boosting* nos horizontes de 10 min, 30 min, 1h, 6h, 1 dia e 7 dias para o banco *El Niño* (com e sem ONI) e nos oito horizontes para o banco *La Niña* (com o ONI).

Modelo	Métrica de erro	Horizonte Temporal							
		t+2min	t+10min	t+30min	t+1h	t+2h	t+6h	t+1dia	t+7dias
				Com a vai	riável ONI				
	RMSE	131,6033	199,7348	242,7720	277,7082	315,4368	346,7568	350,0148	348,1694
Persis-	nRMSE	0,2260	0,3430	0,4169	0,4769	0,5417	0,5959	0,6014	0,5953
tência	MAE	72,8477	121,1802	163,0515	201,7155	248,7624	286,0060	287,9736	279,5064
	nMAE	0,1251	0,2081	0,2800	0,3464	0,4272	0,4915	0,4948	0,4779
	RMSE	118,4430	158,7396	177,7261	187,8563	196,4711	207,5071	214,7580	229,9684
	nRMSE	0,2034	0,2726	0,3052	0,3226	0,3374	0,3566	0,3690	0,3932
Redes Neurais	MAE	71,9742	106,9716	125,7243	138,1844	148,1394	161,1875	168,6054	185,6942
1 (curuis	nMAE	0,1236	0,1837	0,2159	0,2373	0,2544	0,2770	0,2897	0,3175
	FS	0,1000	0,2052	0,2679	0,3235	0,3771	0,4015	0,3864	0,3395
	RMSE	118,0354	156,7015	174,9892	186,0511	196,2381	204,1320	210,6840	226,6932
	nRMSE	0,2027	0,2691	0,3005	0,3195	0,3370	0,3508	0,3620	0,3876
Boosting	MAE	72,0325	105,2247	124,5015	136,7286	149,3622	159,7327	166,2774	184,1151
	nMAE	0,1237	0,1807	0,2138	0,2348	0,2565	0,2745	0,2857	0,3148
	FS	0,1031	0,2154	0,2792	0,3300	0,3778	0,4113	0,3980	0,3489
	RMSE	131,8363	174,7534	193,6236	200,3179	209,3401	216,1774	222,4986	236,1680
	nRMSE	0,2264	0,3001	0,3325	0,3440	0,3595	0,3715	0,3823	0,4038
Bagging	MAE	88,5702	127,1198	145,9311	154,3729	166,7151	175,7351	180,2454	194,4087
	nMAE	0,1521	0,2183	0,2506	0,2651	0,2863	0,3020	0,3097	0,3324
	FS	-0,0017	0,1250	0,2024	0,2786	0,3363	0,3765	0,3643	0,3216
				Sem a var	iável ONI				
	RMSE	118,5595	158,7979	177,6649	187,5069	196,1799	207,6234	214,2342	230,6118
	nRMSE	0,2036	0,2727	0,3051	0,3220	0,3369	0,3568	0,3681	0,3943
Redes Neurais	MAE	71,9742	107,2046	125,9552	137,1945	148,0229	161,8858	168,489	186,1621
recuruis	nMAE	0,1236	0,1841	0,2163	0,2356	0,2542	0,2782	0,2895	0,3183
	FS	0,0991	0,2049	0,2681	0,3248	0,3780	0,4012	0,3879	0,3376
	RMSE	118,0936	156,7015	175,1027	186,1093	196,5875	204,8885	211,0914	227,1026
	nRMSE	0,2028	0,2691	0,3007	0,3196	0,3376	0,3521	0,3627	0,3883
Boosting	MAE	72,0325	105,1664	124,6741	136,7286	149,8281	160,5474	166,5684	184,5830
	nMAE	0,1237	0,1806	0,2141	0,2348	0,2573	0,2759	0,2862	0,3156
	FS	0,1026	0,2154	0,2787	0,3298	0,3767	0,4091	0,3969	0,3477
	RMSE	131,8961	174,7534	193,6204	200,3179	209,3401	216,1193	222,4986	236,2264
	nRMSE	0,2264	0,3001	0,3325	0,3440	0,3595	0,3714	0,3823	0,4039
Bagging	MAE	88,5702	127,1198	145,9869	154,3729	166,7151	175,7351	180,2454	194,4672
	nMAE	0,1521	0,2183	0,2507	0,2651	0,2863	0,3020	0,3097	0,3325
	FS	-0,0022	0,1250	0,2024	0,2786	0,3363	0,3767	0,3643	0,3215

Tabela 5 – Resultados do banco de dados La Niña.

Modelo	Métrica de erro	Horizonte Temporal								
		t+2min	t+10min	t+30min	t+1h	t+2h	t+6h	t+1dia	t+7dias	
	Com a variável ONI									
	RMSE	127,2604	195,7848	245,8453	283,5995	326,6347	357,8742	367,0098	359,7919	
Persis-	nRMSE	0,2150	0,3308	0,4151	0,4792	0,5518	0,6049	0,6208	0,6050	
tência	MAE	68,4828	113,4581	159,6128	202,4020	257,6732	296,7001	303,2797	286,5540	
	nMAE	0,1157	0,1917	0,2695	0,3420	0,4353	0,5015	0,5130	0,4859	
	RMSE	111,8116	152,2836	168,4967	181,3924	190,4875	200,6793	217,4982	238,8441	
	nRMSE	0,1889	0,2573	0,2845	0,3065	0,3218	0,3392	0,3679	0,4050	
Redes Neurais	MAE	65,7019	96,8862	113,0023	125,2880	135,3184	147,9063	165,1189	191,7240	
iveuruis	nMAE	0,1110	0,1637	0,1908	0,2117	0,2286	0,2500	0,2793	0,3251	
	FS	0,1214	0,2221	0,3146	0,3604	0,4168	0,4392	0,4073	0,3361	
	RMSE	113,4689	150,0346	168,2598	179,4986	191,3755	198,9044	210,4631	234,8929	
	nRMSE	0,1917	0,2535	0,2841	0,3033	0,3233	0,3362	0,3560	0,3983	
Boosting	MAE	66,5897	95,4066	112,8247	124,5186	136,7982	148,3796	160,8624	189,9548	
	nMAE	0,1125	0,1612	0,1905	0,2104	0,2311	0,2508	0,2731	0,3221	
	FS	0,1083	0,2336	0,3155	0,3670	0,4141	0,4442	0,4265	0,3471	
	RMSE	128,5626	166,7248	185,1391	195,9512	207,0028	210,5003	222,9372	247,6902	
	nRMSE	0,2172	0,2817	0,3126	0,3311	0,3497	0,3558	0,3771	0,4200	
Bagging	MAE	84,2878	115,3520	133,4944	143,4219	156,9835	162,7561	175,1691	201,8675	
	nMAE	0,1424	0,1949	0,2254	0,2423	0,2652	0,2751	0,2963	0,3423	
	FS	-0,0182	0,1484	0,2469	0,3090	0,3662	0,4118	0,3925	0,3115	
				Sem a var	iável ONI					
	RMSE	111,9299	152,3428	168,8520	181,7475	191,9082	200,9751	218,8580	241,4390	
	nRMSE	0,1891	0,2574	0,2851	0,3071	0,3242	0,3397	0,3702	0,4094	
Redes Neurais	MAE	65,8795	96,6495	113,2985	125,6431	136,5022	148,0246	166,2422	195,2624	
ivenuis	nMAE	0,1113	0,1633	0,1913	0,2123	0,2306	0,2502	0,2812	0,3311	
	FS	0,1204	0,2218	0,3131	0,3591	0,4124	0,4384	0,4036	0,3289	
	RMSE	113,5281	150,3305	168,6151	180,8598	192,2634	199,7919	213,2417	237,4877	
	nRMSE	0,1918	0,2540	0,2847	0,3056	0,3248	0,3377	0,3607	0,4027	
Boosting	MAE	66,5897	95,5842	112,9782	125,2288	137,3310	148,8529	163,5227	192,1958	
C	nMAE	0,1125	0,1615	0,1909	0,2116	0,2320	0,2516	0,2766	0,3259	
	FS	0,1079	0,2321	0,3141	0,3622	0,4113	0,4417	0,4189	0,3399	
	RMSE	128,5626	164,7717	185,1391	195,9512	207,0028	210,7369	225,1837	247,6902	
	nRMSE	0,2172	0,2784	0,3126	0,3311	0,3497	0,3562	0,3809	0,4200	
Bagging	MAE	84,2878	112,7479	133,4944	143,3977	156,9835	162,9336	176,4698	201,8675	
	nMAE	0,1424	0,1905	0,2254	0,2423	0,2652	0,2754	0,2985	0,3423	
	FS	-0,0102	0,1584	0,2469	0,3090	0,3662	0,4111	0,3864	0,3115	

Tabela 6 – Resultados do banco de dados El Niño.

Os Gráficos 6, 7, 8 e 9 apresentam um comparativo dos valores de nRMSE dos modelos de persistência, redes neurais, Boosting e Bagging, respectivamente, entre os dois bancos de dados considerados. Observa-se que para os seis primeiros horizontes temporais, nos Gráficos 7, 8 e 9, o erro obtido no banco La Niña é entre 0,3% e 7,8% superior ao obtido no banco El Niño, o que se inverte nos dois últimos horizontes, com erro entre 0,5% e 3,8%. No gráfico 6, referente ao modelo de persistência, nota-se que apenas nos três primeiros horizontes o nRMSE do banco La Niña é superior ao obtido no banco El Niño.

O melhor desempenho do banco El Niño pode ser explicado pela menor variabilidade do preditor Kt em relação ao banco La Niña. Conforme Fouilloy et at. (2018), maior o erro de previsão de uma dada variável quanto maior for sua variabilidade. O Atlas Solarimétrico do Ceará (2011) também aponta que o erro de simulações da radiação solar para anos com ocorrência de El Niño (principalmente para eventos de maior ONI, isto é, maior intensidade) é menor do que para anos com ocorrência de La Niña.

0,45

0,4 0,35

0,3

0.2

0,15 0,1

0.05

nRMSE (%) 0.25

Gráfico 6 – Valores de nRMSE para a Persistência.

Z La Niña com ONI □ La Niña sem ONI EI Niño com ONI EI Niño sem ONI

Z La Niña com ONI □ La Niña sem ONI El Niño com ONI El Niño sem ONI

60

Horizontes temporais (minutos)

120

360

1440

10080

30

10

Gráfico 9 - Valores de nRMSE para o

Z La Niña com ONI
ILa Niña sem ONI
El Niño com ONI
El Niño sem ONI

Z La Niña com ONI □ La Niña sem ONI El Niño com ONI El Niño sem ONI

Fonte: elaborado pela autora.

Observa-se também que, para os oito horizontes de tempo, nos Gráficos 6, 7, 8 e 9, há redução entre 0,03% e 0,37% do nRMSE quando o preditor ONI é adicionado ao banco *La Niña* e há redução entre 0,05% e 1,3% do nRMSE quando o preditor ONI é adicionado ao banco *El Niño*, assim como verificado anteriormente para o banco de dados completo.

A variação do nRMSE pela retirada do preditor ONI está indicada nos Gráficos 10, 11 e 12, para os modelos redes neurais, *Boosting* e *Bagging*.

Nota-se que, à exceção do horizonte de 10 min para o modelo *Bagging*, o banco *El Niño* tem maior sensibilidade à presença do preditor ONI, apresentando maiores variações. Observa-se também que, nos três modelos no horizonte de 2 min, não há diferença entre os valores de nRMSE com e sem a variável ONI, indicando que a presença dessa variável não influencia no erro de previsão para horizontes temporais curtos.

Fonte: elaborado pela autora.

4.3 Bancos de dados Primavera, Verão, Outono e Inverno.

As Tabelas 7, 8, 9 e 10 apresentam os resultados obtidos para os quatro modelos nos oito horizontes temporais considerados, com e sem a presença da variável ONI. As tabelas se referem, respectivamente, aos bancos Verão, Primavera, Inverno e Outono. Os menores valores de RMSE para cada horizonte estão indicados em cinza nas tabelas.

Dentre os quatro bancos considerados, o banco Inverno apresenta os valores de RMSE mais baixos, seguido do banco Outono. Os bancos Verão e Primavera apresentam valores de RMSE mais elevados e próximos entre si. Esse comportamento é verificado para os quatro modelos de previsão nos oito horizontes considerados. Tomando, por exemplo, os erros do modelo *Boosting*, para o horizonte de 2 min, tem-se os RMSE de 85,8815 W/m² para o Inverno, 115,2094 W/m² para o Outono e 127,6740 W/m² e 130,0497 W/m² para Verão e Primavera, respectivamente.

Quando se avalia o desempenho dos bancos em relação ao nRMSE percebe-se que o banco Inverno apresenta os menores valores de erro, seguido do banco Primavera. Os bancos Outono e Verão apresentam os valores de nRMSE mais elevados e próximos entre si. Para o horizonte de 2 min, no modelo *Boosting*, por exemplo, tem-se um nRMSE de 0,1350 para o Inverno, 0,1973 para a Primavera e 0,2267 e 0,2306 para Outono e Verão, respectivamente.

Em relação ao preditor ONI, percebe-se que a adição deste reduz os valores de nRMSE em até 5,7%, a exceção dos horizontes indicados pela linha tracejada nas Tabelas 7, 8, 9 e 10 nos quais o nRMSE aumenta entre 0,04% e 1,1% com a adição do ONI.

t+2min t+10min t+30min t+1h t+2h t+6h t+1dia t+7dias Com a variàvel ONI Com a variàvel ONI Com a variàvel ONI s33,4732 365,6943 381,3356 Persis- nRMSE 0.2596 0.2596 0.4637 0.5110 0.5737 0.6381 0.6627 0.7102 mAKE 0.3118 0.2556 0.3271 0.3806 0.4529 0.5212 0.5402 0.5774 mAKE 0.118 0.2526 0.3183 0.3553 0.3743 0.3992 0.4214 0.4463 0.4417 Redes nAKE 8.3,1597 126,910 149,3792 161,7276 176,7343 193,6043 207,375 218,5350 nMAE 0.1502 0.2229 0.2697 0.2319 0.3189 0.3495 0.3265 0.3217 nAKE 127,6740 172,5410 194,6305 205,4977 219,7956 240,147 248,9766 nRMSE 0.2306 0.3116 0.3456 0.3417 0.3486	Modelo	Métrica de erro	Horizonte Temporal								
Com a variável ONI Persis- fência RMSE 143,7301 219,0540 256,8303 283,1203 317,9444 353,4732 365,6943 381,3356 Persis- fência 0.2596 0.3956 0.4637 0.5110 0.5737 0.6381 0.6627 0.7102 MAE 83,4919 141,9200 181,171 210,8702 0.5212 0.5402 0.5717 MAE 0.2526 0.3181 0.3253 0.3743 0.3992 0.4214 0.4463 0.4817 RMSE 0.2326 0.3183 0.3553 0.3743 0.3992 0.4214 0.4463 0.4817 RMSE 0.2326 0.2329 0.2697 0.2919 0.3189 0.3495 0.3758 210,670 MAE 83,1597 126,9140 149,3792 161,7276 176,7343 193,6043 21,8917 24,8976 MAE 81,7168 124,616 141,5514 10,3976 0.4155 0.4311 0.4367 0.3481 0.3494 0.3497			t+2min	t+10min	t+30min	t+1h	t+2h	t+6h	t+1dia	t+7dias	
RMSE 143,7301 219,0540 256,8303 283,1203 317,9444 353,4732 365,6943 381,3356 Persis- tência nRMSE 0,2596 0,3956 0,4637 0,5110 0,5737 0,6381 0,6627 0,7102 MAE 83,4919 141,9200 181,1714 210,8720 250,9971 288,7169 298,0958 310,0298 mMAE 0,1518 0,2563 0,3271 0,3806 0,4529 0,5212 0,5042 0,5774 RMSE 128,7813 176,2510 196,7906 207,3815 221,266 233,430 246,2794 288,645 Nurris MAE 83,1597 126,9140 149,3792 167,774 176,743 193,6043 207,3758 218,350 RMAE 0,1502 0,2229 0,2697 0,2119 0,3189 0,3495 0,3758 0,4070 FS 0,1104 0,1524 0,2337 0,2655 0,3041 0,3396 0,3265 0,3217 RMSE 127,6740 17		Com a variável ONI									
Persis- têncianRMSE0,25960,39560,46370,51100,57370,63810,66270,7102MAE83,4919141,9200181,1714210,8720250,9971288,7169298,0958310.0298nMAE0,15180,25630,32710,38060,45290,52120,54020,5774nMSE0,23260,31330,35530,37430,39920,42140,46430,4817nRMSE0,23260,31830,35530,37430,39920,42140,46430,4817nAAE0,15020,22220,26970,21910,31890,34950,37580,4070FS0,10400,19540,23370,21750,30410,33960,32650,3217RMSE127,6740172,5410194,6305205,4977219,7956230,1647237,8917248,9796nRMSE0,23060,31160,35140,30790,34680,34910,3497nRMSE0,23060,31160,35140,30700,31880,34910,3497nRMSE0,2304120,9697222,6733236,8650245,9522254,3361263,1548nRMSE0,23140,34900,30900,32660,31140,34950,34140,34950,3491BaggingMAE97,978144,2456166,2169181,114196,5192211,109219,074225,4616nMAE0,17700,26050,30110,32650,33110,33710,3317		RMSE	143,7301	219,0540	256,8303	283,1203	317,9444	353,4732	365,6943	381,3356	
těncia MAE 83,4919 141,9200 181,1714 210,8720 250,9971 288,7169 298,0958 310,0298 nMAE 0,1518 0,2563 0,3271 0,3806 0,4529 0,5212 0,5402 0,5774 RMSE 128,7813 176,2510 196,7906 207,3815 221,2366 233,433 246,2794 258,6445 nRMSE 0,2326 0,3183 0,3553 0,3743 0,3992 0,4214 0,4463 0,4817 Neurais nAAE 0,1502 0,2292 0,2697 0,2919 0,3189 0,3295 0,3217 248,9760 NAE 127,6740 172,5410 194,6305 20,6497 219,9755 230,1647 237,8917 248,9769 nRMSE 0,2306 0,3116 0,3514 0,4970 0,3966 0,4155 0,4311 0,4637 nRMSE 127,6740 172,5416 194,0519 19,0643 201,636 211,9307 nAAE 0,1147 0,2123 0,2421 0,2471	Persis-	nRMSE	0,2596	0,3956	0,4637	0,5110	0,5737	0,6381	0,6627	0,7102	
nMAE0,15180,25630,32710,38060,45290,52120,54020,5774RMSE128,7813176,2510196,7906207,3815221,2366233,430246,2794258,6445nRMSE0,23260,31830,35530,37430,39920,42140,44630,4817RedesMAE83,1597126,9140149,3792161,7276176,7343193,6043207,3758218,5350NMAE0,15020,22920,26970,29190,31890,34950,37650,4070FS0,10400,19540,23370,26750,30410,33960,32650,4077RMSE127,6740172,5410194,6305205,4977219,7956230,1647237,8917248,9796nMAE0,23060,31160,35140,37090,34650,41550,43170,4637BoostingMAE82,7168124,669147,5514160,9519176,8451193,6043201,6368211,9307nMAE0,14940,22460,26640,29050,31910,34950,36540,3491nMAE140,2974190,9801210,969722,6733236,8650245,9522254,336263,1548nRMSE120,274190,98320,21550,30410,30400,30470,4194nRMSE0,23490,24240,41500,31540,36570,31410,3077259,2352nRMSE140,274144,2456166,2169181,1194196,5192	tência	MAE	83,4919	141,9200	181,1714	210,8720	250,9971	288,7169	298,0958	310,0298	
RMSE128,7813176,2510196,7906207,3815221,2366233,4330246,2794258,6445nRMSE0,23260,31830,35530,37430,39920,42140,44630,4817MAE83,1597126,9140149,3792161,7276176,7343193,6043207,3758218,5350mAAE0,15020,22920,26970,29190,31890,34550,37580,4070FS0,10400,19540,23370,26750,30410,33960,32650,3217RMSE127,6740172,5410194,605205,4977219,7956230,1647237,8917248,9766nRMSE0,23060,31160,3140,37940,30450,41550,43110,4637BoostingMAE82,7168124,3669147,5514160,9519176,8451193,6043201,6368211,9307nRMSE0,21660,22460,20640,20950,31910,34950,34940,3497rBaggingMAE9,1797124,365162,169181,1194196,512211,090219,0744225,4616nRMSE140,2974190,9801210,9697222,673323,6850245,952243,63024,952BaggingMAE9,79978144,2456166,2169181,1194196,512211,090219,074225,4616nRMSE130,0547174,9221196,73520,799921,2366235,0395243,6307259,252RMSE130,0547 <td< td=""><td></td><td>nMAE</td><td>0,1518</td><td>0,2563</td><td>0,3271</td><td>0,3806</td><td>0,4529</td><td>0,5212</td><td>0,5402</td><td>0,5774</td></td<>		nMAE	0,1518	0,2563	0,3271	0,3806	0,4529	0,5212	0,5402	0,5774	
nRMSE 0,2326 0,3183 0,3553 0,3743 0,3992 0,4214 0,4463 0,4463 NAE 83,1597 126,9140 149,3792 161,7276 176,7343 193,6043 207,3758 218,5350 nMAE 0,1502 0,2292 0,2697 0,2019 0,3189 0,3455 0,3758 0,4070 FS 0,1040 0,1954 0,2337 0,2675 0,3041 0,3396 0,3265 0,3217 RMSE 127,6740 172,5110 194,6305 205,977 219,7956 230,1647 237,8917 248,976 nRMSE 0,2306 0,3116 0,3514 0,3070 0,3664 0,4131 0,4637 Boosting MAE 8,27168 124,3669 147,5514 160,9519 176,8451 193,6043 201,6368 211,9307 MAE 0,1177 0,2133 0,2241 0,3495 0,3454 0,3459 0,3459 0,3454 0,3459 0,4109 0,4459 0,4409 0,4099 161,518		RMSE	128,7813	176,2510	196,7906	207,3815	221,2366	233,4330	246,2794	258,6445	
Redes Neurais MAE 83,1597 126,9140 149,3792 161,7276 176,7343 193,6043 207,3758 218,5350 nMAE 0,1502 0,2292 0,2697 0,2191 0,3189 0,3495 0,3758 0,4070 FS 0,1040 0,1954 0,2337 0,2675 0,3041 0,3396 0,3265 0,3217 RMSE 127,6740 172,5410 194,6305 205,4977 219,7956 230,1647 23,8917 248,9796 nRMSE 0,2306 0,3116 0,3514 0,3709 0,3666 0,4155 0,4311 0,4637 Boosting MAE 8,2,7168 124,3669 147,5514 160,9519 176,8451 193,6043 201,6368 211,9307 nMAE 0,1494 0,2246 0,2646 0,2055 0,3191 0,3495 0,3449 0,3470 RMSE 104,0274 190,901 10,6967 222,6733 236,8650 245,9522 254,3361 243,169 RMSE 0,2349		nRMSE	0,2326	0,3183	0,3553	0,3743	0,3992	0,4214	0,4463	0,4817	
Neurais nMAE 0,1502 0,2292 0,2697 0,2199 0,3189 0,3495 0,3758 0,4070 FS 0,1040 0,1954 0,2337 0,2675 0,3041 0,3396 0,3265 0,3217 RMSE 127,6740 172,5410 194,6305 205,4977 219,7956 230,1647 23,8917 248,9796 nRMSE 0,2306 0,3116 0,3514 0,3709 0,3966 0,4155 0,4311 0,4637 Boosting MAE 82,7168 124,3669 147,5514 160,9519 176,8451 193,6043 201,6368 211,9307 nMAE 0,1494 0,2246 0,2644 0,2055 0,3191 0,3495 0,3654 0,3494 Bagging MAE 140,2974 190,901 210,967 222,6733 236,8650 245,9522 254,3361 263,1548 nRMSE 142,256 166,2169 181,119 196,5192 211,1090 219,0744 255,4616 nMAE 0,1770 0,2605<	Redes	MAE	83,1597	126,9140	149,3792	161,7276	176,7343	193,6043	207,3758	218,5350	
FS0,10400,19540,23770,26750,30410,33960,32650,3217RMSE127,6700172,5410194,6305205,4977219,7956230,167237,8917248,9796nRMSE0,23060,31160,35140,37090,39660,41550,43110,4637BoostingMAE82,7168124,3669147,5514160,9519176,8451193,6043201,6368211,9307nMAE0,14940,22460,26640,20050,31100,34950,36540,39490,3470FS0,11170,21230,24210,27410,30870,44880,34900,34900,4019BaggingMAE140,2974190,9801210,069722,6733236,8650245,9522254,336263,1548nRMSE0,17700,26050,30110,32690,35460,38110,40990,4019mAE9,79978144,2456166,2169181,1194196,5192211,009219,0744254,616nMAE0,17700,26050,30110,32690,35460,38110,30450,3049mAE130,057174,9221196,7352207,909212,366235,0395243,6307259,2352nRMSE130,057174,9221196,73520,7990212,366235,0395243,6307259,2352nRMSE0,31490,21590,25590,30410,30500,34150,4045nMAE0,15120,22910,2639	Neurais	nMAE	0,1502	0,2292	0,2697	0,2919	0,3189	0,3495	0,3758	0,4070	
RMSE127,6740172,5410194,6305205,4977219,7956230,167237,8917248,9796nRMSE0,23060,31160,35140,37090,39660,41550,43110,4637BoostingMAE82,7168124,3669147,5514160,9519176,8451193,6043201,6368211,9307nMAE0,14940,22460,26640,20050,31190,34950,36540,39490,3470FS0,11170,21230,24210,27410,30870,44880,34940,34090,4019BaggingMAE97,978144,2456166,2169181,1194196,5192211,109219,0744225,4616nMAE0,17700,26050,30110,32690,35460,38110,30700,4199FS0,02380,12810,17850,21350,25500,30410,30450,3099FS0,02380,12810,17850,21350,25500,30410,30450,3037RMSE130,057174,9221196,735227,9909221,2366235,0395243,6307259,2352nRMSE0,31490,21590,35520,37540,39920,42430,44150,4828NRME130,057174,9221196,73520,790921,2366235,0395243,6307259,2352nRMSE0,31490,22990,321717,7993195,9308205,8585219,2313nMAE0,5120,22910,26950,3041 </td <td></td> <td>FS</td> <td>0,1040</td> <td>0,1954</td> <td>0,2337</td> <td>0,2675</td> <td>0,3041</td> <td>0,3396</td> <td>0,3265</td> <td>0,3217</td>		FS	0,1040	0,1954	0,2337	0,2675	0,3041	0,3396	0,3265	0,3217	
nRMSE0,23060,31160,35140,37090,39660,41550,43110,4637BoostingMAE82,7168124,3669147,5514160,9519176,8451193,6043201,6368211,9307nMAE0,14940,22460,26640,29050,31910,34950,36540,3947FS0,11170,21230,24210,27410,30870,34880,34940,3470RMSE140,2974190,9801210,9697222,6733236,8650245,9522254,3361263,1548nRMSE0,25340,34490,38090,40190,42740,44400,46090,4901BaggingMAE97,978144,2456166,2169181,1194196,5192211,1000219,0744225,4616nMAE0,17700,26050,30010,32690,35460,38110,30470,4199FS0,02380,12810,17850,21350,25500,30410,30450,3099RMSE130,0547174,9221196,7352207,9909221,2366235,0395243,6307259,2352nRMSE0,23490,31590,35520,37440,39920,42430,44150,4828MAE83,7134126,8586148,8253162,2171177,393195,9308205,8858219,2331nMAE0,15120,22190,22690,32140,33500,33370,320223,97679251,9865NGMSE0,23070,31180,35210,		RMSE	127,6740	172,5410	194,6305	205,4977	219,7956	230,1647	237,8917	248,9796	
Boosting MAE 82,7168 124,3669 147,5514 160,9519 176,8451 193,6043 201,6368 211,9307 nMAE 0,1494 0,2246 0,2664 0,2905 0,3191 0,3495 0,3654 0,3947 FS 0,1117 0,2123 0,2421 0,2741 0,3087 0,3488 0,3494 0,3470 RMSE 140,2974 190,9801 210,9697 222,6733 236,8650 245,9522 254,3361 263,1548 nRMSE 0,2534 0,3449 0,3809 0,4019 0,4274 0,4440 0,4609 0,4019 Bagging MAE 97,978 144,2456 166,2169 181,1194 196,5192 211,1000 219,0744 25,4616 nMAE 0,1770 0,2605 0,3010 0,3269 0,3546 0,3811 0,3045 0,3099 FS 0,0238 0,1281 0,1785 0,2135 0,2550 0,3041 0,3453 25,9352 nRMSE 130,0547 174,9221		nRMSE	0,2306	0,3116	0,3514	0,3709	0,3966	0,4155	0,4311	0,4637	
nMAE0,14940,22460,26640,29050,31910,34950,36540,3947FS0,11170,21230,24210,27410,30870,34880,34940,3470FS0,25340,9801210,969722,6733236,8650245,9522254,3361263,1548nRMSE0,25340,34490,38090,40190,42740,44400,46090,4901BaggingMAE97,9978144,2456166,2169181,1194196,5192211,1090219,0744225,4616nMAE0,17700,26050,30010,32690,35460,38110,39700,4199FS0,02380,12810,17850,21350,25500,30410,30450,3099RedesnRMSE130,0547174,9221196,7352207,909921,2366235,0395243,6307259,2352nRMSE0,23490,31590,35520,37540,39920,42430,41550,4828NeuraisnAAE83,7134126,8586148,8253162,2817177,3993195,9308205,8558219,2331nMAE0,15120,22190,26890,29290,32010,35370,33710,4033nMAE0,15120,22010,26740,29240,32130,35140,34660,3997seostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,2674	Boosting	MAE	82,7168	124,3669	147,5514	160,9519	176,8451	193,6043	201,6368	211,9307	
FS0,11170,21230,24210,27410,30870,34880,34940,3470RMSE140,2974190,9801210,9697222,6733236,8650245,9522254,3361263,1548nRMSE0,25340,34490,38090,40190,42740,44400,46090,4901BaggingMAE97,9978144,2456166,2169181,1194196,5192211,1090219,0744225,4616nMAE0,17700,26050,30010,32690,35460,38110,39700,4199FS0,02380,12810,17850,21350,25500,30410,30450,3099RMSE130,0547174,9221196,7352207,9909221,2366235,0395243,6307259,2352nRMSE0,23490,31590,35520,37540,39920,42430,41150,4828RedesnAAE83,7134126,8586148,8253162,2817177,393195,9308205,8858219,2331nMAE0,15120,22910,26890,29290,32110,35370,37310,4083FS0,09510,20140,23390,26530,30410,33500,33470,3202nRMSE0,23770,31180,35210,37270,39910,41750,43450,4693BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,11130,21190,22060,2673<		nMAE	0,1494	0,2246	0,2664	0,2905	0,3191	0,3495	0,3654	0,3947	
RMSE 140,2974 190,9801 210,9697 222,6733 236,8650 245,9522 254,3361 263,1548 nRMSE 0,2534 0,3449 0,3809 0,4019 0,4274 0,4440 0,4609 0,4901 Bagging MAE 97,9978 144,2456 166,2169 181,1194 196,5192 211,1090 219,0744 225,4616 nMAE 0,1770 0,2605 0,3001 0,3269 0,3546 0,3811 0,3970 0,4199 FS 0,0238 0,1281 0,1785 0,2135 0,2550 0,3041 0,3045 0,3099 Sema variável ONI Sem a variável ONI Sem a variável ONI Sem a variável ONI 0,4150 0,4288 0,4150 0,4828 nRMSE 0,2349 0,3159 0,3552 0,3754 0,3992 0,4243 0,4155 0,4828 nRMSE 0,1512 0,2291 0,2689 0,2929 0,3201 0,3537 0,3731 0,4083 FS 0,0951 0,2014 0,2339 <td></td> <td>FS</td> <td>0,1117</td> <td>0,2123</td> <td>0,2421</td> <td>0,2741</td> <td>0,3087</td> <td>0,3488</td> <td>0,3494</td> <td>0,3470</td>		FS	0,1117	0,2123	0,2421	0,2741	0,3087	0,3488	0,3494	0,3470	
nRMSE0,25340,34490,38090,40190,42740,44400,46090,4901BaggingMAE97,978144,2456166,2169181,1194196,5192211,109219,0744225,4616nMAE0,17700,26050,30010,32690,35460,38110,39700,4199FS0,02380,12810,17850,21350,25500,30410,30450,3099FS0,02380,1281196,7352207,9909221,2366235,0395243,6307259,2352nRMSE0,23490,31590,35520,37540,39920,42430,44150,4828nRMSE0,17120,26890,29290,32010,35370,37310,4083nMAE0,15120,20140,23390,26530,30410,33500,33370,3202nMAE0,1971124,5735148,1053162,0046178,0644194,6568203,402214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,402214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392BoostingMAE141,7369190,9801210,969722,673323,68650245,95		RMSE	140,2974	190,9801	210,9697	222,6733	236,8650	245,9522	254,3361	263,1548	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		nRMSE	0,2534	0,3449	0,3809	0,4019	0,4274	0,4440	0,4609	0,4901	
nMAE 0,1770 0,2605 0,3001 0,3269 0,3546 0,3811 0,3970 0,4199 FS 0,0238 0,1281 0,1785 0,2135 0,2550 0,3041 0,3045 0,3099 FS 0,0238 0,1281 0,1785 0,2135 0,2550 0,3041 0,3045 0,3099 RMSE 130,0547 174,9221 196,7352 207,9909 221,2366 235,0395 243,6307 259,2352 nRMSE 0,2349 0,3159 0,3552 0,3754 0,3992 0,4243 0,4415 0,4828 MAE 83,7134 126,8586 148,8253 162,2817 177,3993 195,9308 205,8858 219,2331 nMAE 0,1512 0,2291 0,2689 0,2929 0,3201 0,3537 0,3731 0,4083 FS 0,0951 0,2014 0,2339 0,2653 0,3041 0,3350 0,3337 0,3202 nRMSE 127,7293 172,6312 195,0182 206,4950 221,181	Bagging	MAE	97,9978	144,2456	166,2169	181,1194	196,5192	211,1090	219,0744	225,4616	
FS0,02380,12810,17850,21350,25500,30410,30450,3099Redes NeuraisRMSE130,0547174,9221196,7352207,9909221,2366235,0395243,6307259,2352nRMSE0,23490,31590,35520,37540,39920,42430,44150,4828MAE83,7134126,8586148,8253162,2817177,3993195,9308205,8858219,2331nMAE0,15120,22910,26890,29290,32010,35370,37310,4083FS0,09510,20140,23390,26530,30410,33500,33370,3202RMSE127,7293172,6312195,0182206,4950221,1811231,2726239,7679251,9865nRMSE0,23070,31180,35210,37270,39910,41750,43450,4693BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4005BaggingMAE100,1017144,2456 <td></td> <td>nMAE</td> <td>0,1770</td> <td>0,2605</td> <td>0,3001</td> <td>0,3269</td> <td>0,3546</td> <td>0,3811</td> <td>0,3970</td> <td>0,4199</td>		nMAE	0,1770	0,2605	0,3001	0,3269	0,3546	0,3811	0,3970	0,4199	
Sem a variável ONI RMSE 130,0547 174,9221 196,7352 207,9909 221,2366 235,0395 243,6307 259,2352 nRMSE 0,2349 0,3159 0,3552 0,3754 0,3992 0,4243 0,4415 0,4828 MAE 83,7134 126,8586 148,8253 162,2817 177,3993 195,9308 205,8585 219,2331 nMAE 0,1512 0,2014 0,2689 0,2929 0,3201 0,3537 0,3731 0,4083 FS 0,0951 0,2014 0,2339 0,2653 0,3041 0,3350 0,3337 0,3202 RMSE 127,7293 172,6312 195,0182 206,4950 211,181 231,2726 239,7679 251,9865 nRMSE 0,2307 0,3118 0,3521 0,3727 0,3991 0,4175 0,4345 0,4693 Boosting MAE 82,7721 124,5735 148,1053 162,0046 178,064 194,6568 203,4026 214,6154 nMAE <td></td> <td>FS</td> <td>0,0238</td> <td>0,1281</td> <td>0,1785</td> <td>0,2135</td> <td>0,2550</td> <td>0,3041</td> <td>0,3045</td> <td>0,3099</td>		FS	0,0238	0,1281	0,1785	0,2135	0,2550	0,3041	0,3045	0,3099	
Redes NeuraisRMSE130,0547174,9221196,7352207,9909221,2366235,0395243,6307259,2352nRMSE0,23490,31590,35520,37540,39920,42430,44150,4828MAE83,7134126,8586148,8253162,2817177,3993195,9308205,8858219,2331nMAE0,15120,22910,26890,29290,32010,35370,37310,4083FS0,09510,20140,23390,26530,30410,33500,33370,3202RMSE127,7293172,6312195,0182206,4950221,1811231,2726239,7679251,9865nRMSE0,23070,31180,35210,37270,39910,41750,43450,4693BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696RMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,216					Sem a var	iável ONI					
Redes NeuraisnRMSE0,23490,31590,35520,37540,39920,42430,44150,4828MAE83,7134126,8586148,8253162,2817177,3993195,9308205,8858219,2331nMAE0,15120,22910,26890,29290,32010,35370,37310,4083FS0,09510,20140,23390,26530,30410,33500,33370,3202RMSE127,7293172,6312195,0182206,4950221,1811231,2726239,7679251,9865nRMSE0,23070,31180,35210,37270,39910,41750,43450,4693BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,3001 <td></td> <td>RMSE</td> <td>130,0547</td> <td>174,9221</td> <td>196,7352</td> <td>207,9909</td> <td>221,2366</td> <td>235,0395</td> <td>243,6307</td> <td>259,2352</td>		RMSE	130,0547	174,9221	196,7352	207,9909	221,2366	235,0395	243,6307	259,2352	
Redes NeuraisMAE83,7134126,8586148,8253162,2817177,3993195,9308205,8858219,2331nMAE0,15120,22910,26890,29290,32010,35370,37310,4083FS0,09510,20140,23390,26530,30410,33500,33370,3202RMSE127,7293172,6312195,0182206,4950221,1811231,2726239,7679251,9865nRMSE0,23070,31180,35210,37270,39910,41750,43450,4693BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,30010,32690,35460,38110,39770,4202FS0,01400,12810,17850,21350,25500,30410,30300,3093		nRMSE	0,2349	0,3159	0,3552	0,3754	0,3992	0,4243	0,4415	0,4828	
nMAE0,15120,22910,26890,29290,32010,35370,37310,4083FS0,09510,20140,23390,26530,30410,33500,33370,3202RMSE127,7293172,6312195,0182206,4950221,1811231,2726239,7679251,9865nRMSE0,23070,31180,35210,37270,39910,41750,43450,4693BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,30010,32690,35460,38110,39770,4202FS0,01400,12810,17850,21350,25500,30410,30300,3093	Redes Neurais	MAE	83,7134	126,8586	148,8253	162,2817	177,3993	195,9308	205,8858	219,2331	
FS0,09510,20140,23390,26530,30410,33500,33370,3202RMSE127,7293172,6312195,0182206,4950221,1811231,2726239,7679251,9865nRMSE0,23070,31180,35210,37270,39910,41750,43450,4693BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,30010,32690,35460,38110,39770,4202FS0,01400,12810,17850,21350,25500,30410,30300,3093	1 (curuis	nMAE	0,1512	0,2291	0,2689	0,2929	0,3201	0,3537	0,3731	0,4083	
RMSE127,7293172,6312195,0182206,4950221,1811231,2726239,7679251,9865nRMSE0,23070,31180,35210,37270,39910,41750,43450,4693BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,30010,32690,35460,38110,39770,4202FS0,01400,12810,17850,21350,25500,30410,30300,3093		FS	0,0951	0,2014	0,2339	0,2653	0,3041	0,3350	0,3337	0,3202	
nRMSE0,23070,31180,35210,37270,39910,41750,43450,4693BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,30010,32690,35460,38110,39770,4202FS0,01400,12810,17850,21350,25500,30410,30300,3093		RMSE	127,7293	172,6312	195,0182	206,4950	221,1811	231,2726	239,7679	251,9865	
BoostingMAE82,7721124,5735148,1053162,0046178,0644194,6568203,4026214,6154nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,30010,32690,35460,38110,39770,4202FS0,01400,12810,17850,21350,25500,30410,30300,3093		nRMSE	0,2307	0,3118	0,3521	0,3727	0,3991	0,4175	0,4345	0,4693	
nMAE0,14950,22500,26740,29240,32130,35140,36860,3997FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,30010,32690,35460,38110,39770,4202FS0,01400,12810,17850,21350,25500,30410,30300,3093	Boosting	MAE	82,7721	124,5735	148,1053	162,0046	178,0644	194,6568	203,4026	214,6154	
FS0,11130,21190,24060,26530,30430,34570,34430,3392RMSE141,7369190,9801210,9697222,6733236,8650245,9522254,8879263,3696nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,30010,32690,35460,38110,39770,4202FS0,01400,12810,17850,21350,25500,30410,30300,3093		nMAE	0,1495	0,2250	0,2674	0,2924	0,3213	0,3514	0,3686	0,3997	
RMSE 141,7369 190,9801 210,9697 222,6733 236,8650 245,9522 254,8879 263,3696 nRMSE 0,2560 0,3449 0,3809 0,4019 0,4274 0,4440 0,4619 0,4905 Bagging MAE 100,1017 144,2456 166,2169 181,1194 196,5192 211,1090 219,4607 225,6227 nMAE 0,1808 0,2605 0,3001 0,3269 0,3546 0,3811 0,3977 0,4202 FS 0,0140 0,1281 0,1785 0,2135 0,2550 0,3041 0,3030 0,3093		FS	0,1113	0,2119	0,2406	0,2653	0,3043	0,3457	0,3443	0,3392	
nRMSE0,25600,34490,38090,40190,42740,44400,46190,4905BaggingMAE100,1017144,2456166,2169181,1194196,5192211,1090219,4607225,6227nMAE0,18080,26050,30010,32690,35460,38110,39770,4202FS0,01400,12810,17850,21350,25500,30410,30300,3093		RMSE	141,7369	190,9801	210,9697	222,6733	236,8650	245,9522	254,8879	263,3696	
Bagging MAE 100,1017 144,2456 166,2169 181,1194 196,5192 211,1090 219,4607 225,6227 nMAE 0,1808 0,2605 0,3001 0,3269 0,3546 0,3811 0,3977 0,4202 FS 0,0140 0,1281 0,1785 0,2135 0,2550 0,3041 0,3030 0,3093	Bagging	nRMSE	0,2560	0,3449	0,3809	0,4019	0,4274	0,4440	0,4619	0,4905	
nMAE 0,1808 0,2605 0,3001 0,3269 0,3546 0,3811 0,3977 0,4202 FS 0,0140 0,1281 0,1785 0,2135 0,2550 0,3041 0,3030 0,3093		MAE	100,1017	144,2456	166,2169	181,1194	196,5192	211,1090	219,4607	225,6227	
FS 0,0140 0,1281 0,1785 0,2135 0,2550 0,3041 0,3030 0,3093		nMAE	0,1808	0,2605	0,3001	0,3269	0,3546	0,3811	0,3977	0,4202	
		FS	0,0140	0,1281	0,1785	0,2135	0,2550	0,3041	0,3030	0,3093	

Tabela 7 – Resultados do banco de dados Verão.

Modelo	Métrica de erro	Horizonte Temporal								
		t+2min	t+10min	t+30min	t+1h	t+2h	t+6h	t+1dia	t+7dias	
		Com a variável ONI								
	RMSE	149,3628	212,4829	265,1265	310,5391	356,0182	390,4541	385,2353	360,5594	
Dorcic	nRMSE	0,2266	0,3224	0,4023	0,4712	0,5538	0,5939	0,5894	0,5752	
tência	MAE	79,8886	123,6408	170,4902	222,4256	293,7019	331,1529	322,1624	286,0906	
	nMAE	0,1212	0,1876	0,2587	0,3375	0,4456	0,5037	0,4929	0,4564	
	RMSE	128,7974	157,1213	167,1948	172,7341	182,7727	182,3740	200,7877	236,4447	
	nRMSE	0,1954	0,2384	0,2537	0,2621	0,2773	0,2774	0,3072	0,3772	
Redes Neurais	MAE	76,2633	99,1894	108,5417	115,0682	123,5841	126,4916	143,2050	185,2317	
	nMAE	0,1157	0,1505	0,1647	0,1746	0,1875	0,1924	0,2191	0,2955	
	FS	0,1376	0,2605	0,3693	0,4437	0,4866	0,5329	0,4788	0,3442	
	RMSE	130,0497	155,8032	165,6134	170,6910	175,7861	180,9934	197,9119	269,7927	
	nRMSE	0,1973	0,2364	0,2513	0,2590	0,2667	0,2753	0,3028	0,4304	
Boosting	MAE	78,0430	99,0576	108,6076	114,8704	120,4204	124,8480	142,0939	212,5620	
	nMAE	0,1184	0,1503	0,1648	0,1743	0,1827	0,1899	0,2174	0,3391	
	FS	0,1293	0,2667	0,3753	0,4503	0,5184	0,5364	0,4862	0,2517	
	RMSE	142,2440	169,3799	181,3642	185,8489	188,4411	190,3291	207,2584	336,1126	
	nRMSE	0,2158	0,2570	0,2752	0,2820	0,2859	0,2895	0,3171	0,5362	
Bagging	MAE	93,2034	114,7434	127,2581	129,8306	136,0414	137,3393	151,9620	212,8755	
	nMAE	0,1414	0,1741	0,1931	0,1970	0,2064	0,2089	0,2325	0,3396	
	FS	0,0476	0,2028	0,3159	0,4015	0,4707	0,5125	0,4619	0,0678	
				Sem a var	iável ONI					
	RMSE	129,9179	157,4509	169,1063	173,3931	183,1682	184,4121	200,4609	244,3429	
	nRMSE	0,1971	0,2389	0,2566	0,2631	0,2779	0,2805	0,3067	0,3898	
Redes Neurais	MAE	76,7906	98,9258	109,4643	115,0022	124,3751	127,6092	142,2246	193,4434	
1 (curuis	nMAE	0,1165	0,1501	0,1661	0,1745	0,1887	0,1941	0,2176	0,3086	
	FS	0,1302	0,2589	0,3621	0,4416	0,4855	0,5277	0,4796	0,3230	
	RMSE	130,1157	156,0009	166,0747	172,0091	178,7521	182,5055	201,7028	269,7927	
	nRMSE	0,1974	0,2367	0,2520	0,2610	0,2712	0,2776	0,3068	0,4304	
Boosting	MAE	78,1089	99,2553	108,9371	115,2659	122,0682	126,1628	145,0971	212,5620	
	nMAE	0,1185	0,1506	0,1653	0,1749	0,1852	0,1919	0,2207	0,3391	
	FS	0,1288	0,2658	0,3736	0,4461	0,4979	0,5325	0,4764	0,2517	
	RMSE	142,2440	169,3799	181,3642	186,3762	194,0436	196,5748	208,9578	336,3006	
	nRMSE	0,2158	0,2570	0,2752	0,2828	0,2944	0,2990	0,3197	0,5365	
Bagging	MAE	93,2034	114,7434	127,2581	130,0283	139,8643	143,1906	154,1856	213,0005	
	nMAE	0,1414	0,1741	0,1931	0,1973	0,2122	0,2178	0,2359	0,3398	
	FS	0,0476	0,2028	0,2919	0,4000	0,4549	0,4965	0,4575	0,0672	

Tabela 8 – Resultados do banco de dados Primavera.

Modelo	Métrica de erro		Horizonte Temporal							
		t+2min	t+10min	t+30min	t+1h	t+2h	t+6h	t+1dia	t+7dias	
	Com a variável ONI									
	RMSE	94,9149	159,2592	210,5041	245,9329	284,8851	314,8955	316,6425	308,8768	
Persis-	nRMSE	0,1492	0,2504	0,3309	0,3865	0,4482	0,4946	0,4955	0,4673	
tência	MAE	46,4396	81,4740	125,4500	167,1580	221,7879	262,5614	262,1327	242,9769	
	nMAE	0,0730	0,1281	0,1972	0,2627	0,3489	0,4124	0,4102	0,3676	
	RMSE	84,9272	117,2818	129,0125	135,2154	141,6162	148,0887	159,3756	183,8851	
	nRMSE	0,1335	0,1844	0,2028	0,2125	0,2228	0,2326	0,2494	0,2782	
Redes Neurais	MAE	44,0858	66,2731	76,5296	82,1473	89,0504	96,5187	108,1249	133,1217	
Treature	nMAE	0,0693	0,1042	0,1203	0,1291	0,1401	0,1516	0,1692	0,2014	
	FS	0,1052	0,2635	0,3871	0,4502	0,5029	0,5297	0,4966	0,4046	
	RMSE	85,8815	116,2006	126,2770	133,3701	139,9636	145,0964	155,9887	181,9682	
	nRMSE	0,1350	0,1827	0,1985	0,2096	0,2202	0,2279	0,2441	0,2753	
Boosting	MAE	44,9764	65,0011	74,5575	81,5110	89,8767	95,4363	104,2907	133,1217	
Doosting	nMAE	0,0707	0,1022	0,1172	0,1281	0,1414	0,1499	0,1632	0,2014	
	FS	0,0951	0,2703	0,4001	0,4577	0,5087	0,5392	0,5073	0,4108	
	RMSE	95,6783	129,3662	141,5447	142,7238	151,6590	151,4630	163,7850	189,3052	
	nRMSE	0,1504	0,2034	0,2225	0,2243	0,2386	0,2379	0,2563	0,2864	
Ragging	MAE	56,4273	83,4456	91,2884	94,6189	103,7968	103,6493	113,8123	139,3349	
Bugging	nMAE	0,0887	0,1312	0,1435	0,1487	0,1633	0,1628	0,1781	0,2108	
	FS	-0,0080	0,1877	0,3276	0,4196	0,4676	0,5190	0,4827	0,3871	
				Sem a var	iável ONI					
	RMSE	85,2453	117,0910	127,6129	136,6152	141,2984	149,5530	160,5898	192,6101	
_	nRMSE	0,1340	0,1841	0,2006	0,2147	0,2223	0,2349	0,2513	0,2914	
Redes Neurais	MAE	45,6030	65,8279	75,2573	82,7836	89,6225	98,1103	108,5083	139,4671	
Treature	nMAE	0,0695	0,1035	0,1183	0,1301	0,1410	0,1541	0,1698	0,2110	
	FS	0,1018	0,2647	0,3937	0,4445	0,5040	0,5250	0,4928	0,3764	
	RMSE	85,9451	116,2006	129,1397	134,8972	140,0907	145,6057	156,1805	183,7529	
	nRMSE	0,1351	0,1827	0,2030	0,2120	0,2204	0,2287	0,2444	0,2780	
Boosting	MAE	45,0400	65,0011	75,4481	82,4018	89,4953	96,0093	104,6102	134,7081	
	nMAE	0,0708	0,1022	0,1186	0,1295	0,1408	0,1508	0,1637	0,2038	
	FS	0,0945	0,2703	0,3865	0,4514	0,5082	0,5376	0,5067	0,4051	
	RMSE	95,1694	130,3202	140,1452	141,8330	151,8497	151,4630	165,9577	188,6442	
	nRMSE	0,1496	0,2049	0,2203	0,2229	0,2389	0,2379	0,2597	0,2854	
Bagging	MAE	56,3001	83,8908	90,7795	94,2371	103,7968	103,6493	115,7295	139,0044	
	nMAE	0,0885	0,1319	0,1427	0,1481	0,1633	0,1628	0,1811	0,2103	
	FS	-0,0028	0,1817	0,3342	0,4232	0,4669	0,5190	0,4758	0,3892	

Tabela 9 - Resultados do banco de dados Inverno.

Modelo	Métrica de erro	Horizonte Temporal								
		t+2min	t+10min	t+30min	t+1h	t+2h	t+6h	t+1dia	t+7dias	
	Com a variável ONI									
	RMSE	127,2538	205,8699	252,1233	287,0637	321,8387	352,7236	368,9519	345,7212	
Persis-	nRMSE	0,2504	0,4053	0,4964	0,5651	0,6322	0,6945	0,7231	0,6522	
tência	MAE	71,3008	127,2401	172,0269	211,3736	254,6914	288,9337	303,4375	278,8245	
	nMAE	0,1403	0,2505	0,3387	0,4161	0,5003	0,5689	0,5947	0,5260	
	RMSE	115,2603	164,4217	186,2482	197,6071	210,1471	220,2173	228,1267	227,2473	
	nRMSE	0,2268	0,3237	0,3667	0,3890	0,4128	0,4336	0,4471	0,4287	
Redes	MAE	71,4532	113,4240	136,5244	151,1262	163,4647	178,4187	186,8485	186,6428	
Neurais	nMAE	0,1406	0,2233	0,2688	0,2975	0,3211	0,3513	0,3662	0,3521	
	FS	0,0942	0,2013	0,2612	0,3116	0,3470	0,3756	0,3816	0,3426	
	RMSE	115,2094	131,3740	185,5879	200,2994	208,9762	215,1385	224,4529	225,2859	
	nRMSE	0,2267	0,3177	0,3654	0,3943	0,4105	0,4236	0,4399	0,4250	
Boosting	MAE	71,0975	115,5446	136,6260	153,1074	164,7883	175,6253	184,8076	186,6958	
	nMAE	0,1399	0,2196	0,2690	0,3014	0,3237	0,3458	0,3622	0,3522	
	FS	0,0946	0,3618	0,2639	0,3022	0,3506	0,3900	0,3916	0,3483	
	RMSE	130,9129	179,5076	200,8250	215,4883	223,5868	228,5974	238,1273	238,0080	
	nRMSE	0,2576	0,3534	0,3954	0,4242	0,4392	0,4501	0,4667	0,4490	
Bagging	MAE	91,2223	131,3545	155,2153	171,2425	183,7769	190,7602	198,7370	198,8877	
	nMAE	0,1795	0,2586	0,3056	0,3371	0,3610	0,3756	0,3895	0,3752	
	FS	-0,0287	0,1280	0,2034	0,2493	0,3052	0,3519	0,3545	0,3115	
				Sem a var	iável ONI					
	RMSE	115,2094	162,9994	184,4705	198,8263	211,2671	219,4047	229,4022	240,9235	
	nRMSE	0,2267	0,3209	0,3632	0,3914	0,4150	0,4320	0,4496	0,4545	
Redes Neurais	MAE	71,1991	112,7637	135,4071	152,9042	165,8574	177,9616	188,1751	202,2273	
1 (curuis	nMAE	0,1401	0,2220	0,2666	0,3010	0,3258	0,3504	0,3688	0,3815	
	FS	0,0946	0,2082	0,2683	0,3073	0,3435	0,3779	0,3782	0,3031	
	RMSE	115,2094	161,4248	187,1116	200,5026	209,3835	215,5448	225,4734	225,8691	
	nRMSE	0,2267	0,3178	0,3684	0,3947	0,4113	0,4244	0,4419	0,4261	
Boosting	MAE	71,1483	111,6970	137,7434	153,2090	165,1956	175,9809	185,8791	187,4909	
	nMAE	0,1400	0,2199	0,2712	0,3016	0,3245	0,3465	0,3643	0,3537	
	FS	0,0946	0,2158	0,2578	0,3015	0,3494	0,3889	0,3888	0,3466	
	RMSE	130,9129	179,5076	200,6727	215,4883	223,5868	229,7655	238,2293	238,2730	
	nRMSE	0,2576	0,3534	0,3951	0,4242	0,4392	0,4524	0,4669	0,4495	
Bagging	MAE	91,2223	131,3545	154,5042	171,2425	183,7769	191,2681	198,8391	199,0998	
	nMAE	0,1795	0,2586	0,3042	0,3371	0,3610	0,3766	0,3897	0,3756	
	FS	0,0287	0,1280	0,2040	0,2493	0,3052	0,3486	0,3543	0,3108	

Tabela 10 – Resultados do banco de dados Outono.

Encontra-se explicitada nos Gráficos 13 e 14 a comparação entre o nRMSE dos quatro bancos, nos quais nota-se que o banco Inverno apresenta os menores valores do erro. Esse comportamento é esperado, conforme sugerido por Benali *et al.* (2019), uma vez que o banco Inverno apresenta a menor variabilidade do Kt dentre os quatro bancos.

Gráfico 13 – Valores de nRMSE para a previsão da irradiação nos bancos de dados Verão, Primavera, Inverno e Outono, com o ONI.

Fonte: elaborada pela autora.

Gráfico 14 – Valores de nRMSE para a previsão da irradiação nos bancos de dados Verão, Primavera, Inverno e Outono, sem o ONI.

Desse modo, para previsões da irradiação global em Fortaleza, durante a estação inverno, obtém-se nRMSE entre 29,9% a 33,5% menor utilizando banco de dados composto apenas por dados coletados durante períodos de inverno para o modelo *Boosting*. Para as estações verão e outono obtém-se nRMSE entre 6,7% a 27,4% menor utilizando o banco de dados completo (com as quatro estações), para o modelo *Boosting*.

Para o banco primavera, entretanto, nota-se redução do nRMSE pelo uso do banco de dados completo no modelo *Boosting* apenas para os horizontes de 2 min (redução de 0,9%) e 7 dias (redução de 6,7%). Nos demais horizontes há redução entre 9,3% a 19,6% do nRMSE com a utilização do banco de dados composto apenas por dados coletados durante períodos de primavera em comparação com o banco de dados completo.

Para previsões em períodos com ocorrência de El Niño, com o modelo *Boosting*, observa-se redução do nRMSE de até 2,7% quando se utiliza o banco de dados composto apenas por períodos com episódio de El Niño em comparação ao banco de dados completo. Em relação ao banco La Niña ocorre o processo inverso, há aumento de até 3,7% do nRMSE pelo uso de um banco composto apenas por períodos com episódio de La Niña em relação ao banco completo.

5 CONCLUSÃO

Na presente dissertação foram realizadas previsões da irradiação global horizontal de Fortaleza para os horizontes temporais de 2 min, 10 min, 30 min, 1h, 2h, 6h, 1 dia e 7 dias por meio da implementação dos modelos *Bagging*, *Boosting*, redes neurais e persistência.

A adição da intensidade do *El Niño* e da *La Niña*, ONI, como preditor no banco de dados completo diminuiu o RMSE entre 0,11% a 2,2%, sendo o algoritmo de *Boosting* o método que melhor se adequou aos dados em estudo. *Bagging, Boosting* e redes neurais apresentaram erros menores do que os do modelo de persistência. O modelo Bagging apresentou variação nula do nRMSE em função da adição do ONI em 6 dos 8 horizontes temporais, indicando ser o modelo de menor sensibilidade à presença dessa variável.

Com a abordagem de separação do banco de dados entre os bancos *El Niño* e *La Niña* verificou-se novamente que a adição do preditor ONI reduziu o nRMSE entre 0,03% e 1,3%, sendo novamente o *Boosting* o modelo de melhor desempenho para os dois bancos de dados considerados. Adicionalmente, observou-se que os erros associados ao banco *La Niña* foram entre 0,3% e 7,8% superiores aos do banco *El Niño*, fato correlacionado à maior variabilidade dos dados de índice de claridade deste em relação àquele.

Quanto à abordagem de separação do banco de dados em estações também verificou-se que a adição do ONI reduziu o nRMSE em até 5,7%, sendo o banco Inverno o que apresentou os menores valores de erro.

Desse modo, a variável ONI mostrou-se útil às previsões de irradiação, reduzindo os erros de previsão; bem como concluiu-se que para previsões durante as estações inverno e primavera e durante períodos de *El Niño*, obtém-se nRMSE até 33,5% menores utilizando os respectivos bancos do que usando o banco de dados completo.

REFERÊNCIAS

BENALI, L.; NOTTON, G.; FOUILLOY, A.; VOYANT, C.; DIZENE, R. Solar radiation forecasting using artificial neural network and random forest methods: applications to normal beam, horizontal diffuse and global components. **Renewable** Energy, v. 132, p. 871-884, 2019. doi:10.1016/j.renene.2018.08.044.

FOUILLOY, Alexis; VOYANT, Cyril; NOTTON, Gilles; MOTTE, Fabrice; PAOLI, Christophe; NIVET, Marie-Laurie; GUILLOT, Emmanuel; DUCHAUD, Jean-Laurent. Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability. **Energy**, v. 165, p. 620-629, 2018. doi:10.1016/j.energy.2018.09.116.

FUNDAÇÃO CERENSE DE METEOROLOGIA. Funceme. Atlas Solarimétrico do Ceará 1963-2010. Fortaleza, 2011.

GOVERNO DO ESTADO DO CEARÁ. Camargo Schubert Engenheiros Associados – Curitiba; ADECE, FIEC, SEBRAE – Fortaleza. **Atlas Eólico e Solar: Ceará**. Fortaleza, 2019.

GUTIERREZ-COREA, Frederico-Vladimir; MANSO-CALLEJO, Miguel-Angel; MORENO-REGIDOR, Maria-Pilar; MANRIQUE-SANCHO, Maria-Teresa. Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations. **Solar Energy**, v. 134, pp. 119-131, 2016. doi: 10.1016/j.solener.2016.04.020.

INMAN, Rich H.; PEDRO, Hugo T.C.; COIMBRA, Carlos F. M.. Solar forecasting methods for renewable energy integration. **Progress in Energy and Combustion Science**, v. 39, p. 535-576, 2013. doi:10.1016/j.pecs.2013.06.002.

INCROPERA, Frank P.; DEWITT, David P.; BERGMAN, Theodore L.; LAVINE, Adrienne S. Fundamentos de transferência de calor e massa. LTC, 6. ed., 2008.

IQBAL, Muhammad. An Introduction to Solar Radiation. Academic Press, 1983. INBN: 9780323151818.

JUMAAT, Siti Amely Binti; CROCKER, Flora; WAHAB, Mohd Helmy Abd; RADZI, Nur Hanis Binti Mohammad. Investigate the photovoltaic (PV) module performance using Artificial Neural Network (ANN). **2016 IEEE Conference on Open Systems (ICOS)**, pp. 59-64, 2017. doi: 10.1109/ICOS.2016.7881989.

KAYANO, Mary T.; ANDREOLI, Rita V.; SOUZA, Rodrigo A. F.; GARCIA, Sâmia R.; CALHEIROS, Alan J. P. El niño e la niña nos últimos 30 anos: diferentes tipos. **Revista Climanálise**, Instituto Nacional de Pesquisas Espaciais, INPE, 2016.

KUMLER, Andrew; XIE, Yu; ZHANG, Yingchen. A physics-based smart persistence model for intra-hour forecasting of solar radiation (PSPI) using GHI measurements and a cloud retrieval technique. **Solar Energy**, v. 177, p. 494-500, 2019. doi:10.1016/j.solener.2018.11.046.

LAN, Hai; YIN, He; HONG, Ying-Yi; WEN, Shuli; YU, David C.; CHENG, Peng. Day-ahead

spatio-temporal forecasting of solar irradiation along a navigation route. **Applied Energy**, v. 211, p. 15-27, 2018. doi: 10.1016/j.apenergy.2017.11.014.

LAN, Hai; CHANG, Chi; HONG, Ying-Yi; HE, Yin; WEN, Shuli. Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network. **Applied Energy**, v. 247, p. 389-402, 2019. doi: 10.1016/j.apenergy.2019.04.056.

LAURET, Philippe; VOYANT, Cyril; SOUBDHAN, Ted; DAVID, Mathieu; POGGI, Philippe. A benchmarking of machine learning techniques for solar radiation forecasting in an insular context. **Solar Energy**, v. 112, p. 446-457, 2015. doi:10.1016/j.solener.2014.12.014.

LI, Mao-Fen.; TANG, Xiao-Ping; WU, Wei; LIU, Hong-Bin. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. **Energy Conversion and Management**, v. 70, p. 139-148, 2013. doi:10.1016/j.enconman.2013.03.004.

MARQUEZ, Ricardo; COIMBRA, Carlos F. M. Proposed Metric for Evaluation of Solar Forecasting Models. Journal of Solar Energy Engineering, v. 135, 2013. doi: 10.1115/1.4007496.

MARQUÉS, Ana Isabel; GARCÍA, Vicente; SANCHÉZ, J. S. Exploring the behaviour of base classifiers in credit scoring ensembles. **Expert Systems with Applications**, v. 39, p. 10244–10250, 2012. doi:10.1016/j.eswa.2012.02.092.

MINISTÉRIO DE MINAS E ENERGIA. Empresa de Pesquisa Energética – EPE. Relatório Síntese do Balanço Energético Nacional. Rio de Janeiro, 2019. Disponível em: <<u>http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2019</u>>. Acesso em: 04 nov. 2019.

MOHAMMADI, Kasra; GOUDARZI, Navid. Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of el niño southern oscillation (ENSO) in California. **Renewable Energy**, v. 120, p. 190-200, 2018. doi:10.1016/j.renene.2017.12.069.

NOTTON, Gilles; NIVET, Marie-Laurie.; VOYANT, Cyril; PAOLI, Christophe; DARRAS, Christophe; MOTTE, Fabrice; FOUILLOY, Alexis. Intermittent and stochastic character of renewable energy sources: consequences, cost of intermittence and benefit of forecasting. **Renewable and Sustainable Energy Reviews**, v. 87, p. 96-105, 2018. doi:10.1016/j.rser.2018.02.007.

NOTTON, Gilles; VOYANT, Cyril; FOUILLOY, Alexis; DUCHAUD, Jean-Laurent; NIVET, Marie-Laure. Some applications of ANN to solar radiation estimation and forecasting for energy applications. **Applied Sciences**, v. 9, p. 209, 2019. doi: 10.3390/app9010209.

PAZIKADIN, Abdul Rahim; RIFAI, Damhuji; ALI, Kharudin; MALIK, Muhammad Zeesan; ABDALLA, Ahmed N.; FARAJ, Mooner A. Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years reserch trend. **Science of the Total Environment**, v. 715, 2020. doi:10.1016/j.scitotenv.2020.136848.

ROYER, Julio Cesar; WILHELM, Volmir Eugênio; TEIXEIRA JÚNIOR, Luiz Albino; FRANCO, Edgar Manuel Carreño. Short-term solar radiation forecasting by using an iterative combination of wavelet artificial neural networks. **Independent Journal of Management& Production**, v. 7, n. 1, 2016. doi: 10.14807/ijmp.v7i1.393.

SOBRI, Sobrina; KOOHI-KAMALI, Sam; RAHIM, Nasrudin Abd. Solar photovoltaic generation forecasting methods: A review. **Energy Conversion and Management**, v. 156, p. 459-497, 2018. doi:10.1016/j.enconman.2017.11.019.

SRIVASTAVA, Rachit; TIWARI, A. N.; GIRI, V. K. Forecasting of Solar Radiation in India Using Various ANN Models. **2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)**, pp 1-6, 2018.

TATO, Javier Huertas; BRITO, Miguel Centeno. Using smart persistence and Random Forests to predict photovoltaic energy production. **Energies**, v. 12, 2019. doi:10.3390/en12010100.

VOYANT, Cyril; SOUBDAHAN, Ted; LAURET, Philippe; DAVID, Mathieu; MUSELLI, Marc. Statistical parameters as a means to a priori assess the accuracy of solar forecasting models. **Energy**, v. 90, p. 671-679, 2015. doi:10.1016/j.energy.2015.07.089.

VOYANT, Cyril; NOTTON, Gilles; KALOGIROU, Soteris; NIVET, Marie-Laure; PAOLI, Christophe; MOTTE, Fabrice; FOUILLOY, Alexis. Machine learning methods for solar radiation forecasting: A review. **Renewable Energy**, v. 105, p. 569-582, 2017. doi:10.1016/j.renene.2016.12.095.

ZHU, Tingting; XIE, Liping; WEI, Haikun; WANG, Hai; ZHAO, Xin; ZHANG, Kanjian. Clear-sky direct normal irradiance estimation based on adjustable inputs and error correction. **Journal of Renewable and Sustainable Energy**, v. 11, 2019. doi:10.1063/1.5094808.