Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Mecânica Mestrado em Engenharia Mecânica

CHARLLYS BARROS ANDRADE SOUSA

OBTENÇÃO E ANÁLISE DE FILMES FINOS DE C
dS E TiO $_2$ PARA USO EM CÉLULAS SOLARES FOTOVOLTAICAS

FORTALEZA 2010

OBTENÇÃO E ANÁLISE DE FILMES FINOS DE CdS E TiO₂ PARA USO EM CÉLULAS SOLARES FOTOVOLTAICAS

Dissertação submetida à Coordenação do Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal do Ceará, com Área de Concentração em Processos, Equipamentos e Sistemas para Energias Renováveis como requisito parcial para obtenção do grau de Mestre em Engenharia Mecânica.

Orientador: Prof. Dr. Francisco Nivaldo Aguiar Freire

FORTALEZA 2010

CHARLLYS BARROS ANDRADE SOUSA

OBTENÇÃO E ANÁLISE DE FILMES FINOS DE C
dS E Ti O_2 PARA USO EM CÉLULAS SOLARES FOTOVOLTAICAS

Dissertação submetida à Coordenação do Curso de Pós-Graduação em Engenharia Mecânica da Universidade Federal do Ceará como requisito parcial para obtenção do grau de Mestre em Engenharia Mecânica com área de concentração em Processos, Equipamentos e Sistemas para Energias Renováveis.

Aprovada em ____ / ____ / ____

BANCA EXAMINADORA

Prof. Dr. Francisco Nivaldo Aguiar Freire (Orientador) Universidade Federal do Ceará (UFC)

> Profa. Dra. Maria Eugênia Vieira da Silva Universidade Federal do Ceará (UFC)

Prof. Dr. Rui Carlos Barros da Silva Universidade Estadual do Ceará (UECE)

À Deus, que me concedeu o fôlego da vida, permitindo assim a realização deste trabalho, e aos professores e colegas do Programa de Pós-Graduação em Engenharia Mecânica, por compartilhar seu tempo e conhecimento, eu dedico este trabalho.

AGRADECIMENTOS

Ao meu orientador e amigo professor Francisco Nivaldo Aguiar Freire, pelo seu incentivo e compreensão.

A todos os meus colegas, servidores e professores do departamento de pósgraduação em Engenharia mecânica, Engenharia de Teleinformática, Física e Química, que deram suporte em várias etapas da realização da pesquisa.

A CAPES, pela concessão da bolsa que permitiu a realização desse trabalho.

Acima de tudo Àquele que me deu a oportunidade de ser capaz de aprender tudo o que sei: Deus, o idealizador de toda a ciência.

"Não é a força, mas a perseverança que realiza as coisas"

(Samuel Johnson)

RESUMO

Dedicado à deposição e caracterização de filmes finos de Sulfeto de Cádmio e Dióxido de Titânio para a aplicação em células solares fotovoltaicas. Cada filme foi depositado por um processo diferente. O reagente TiO₂ da marca vetec, foi misturado com ácido clorídrico em solução aquosa formando uma dispersão. Essa dispersão foi espalhada sobre o substrato de vidro e depois aquecida com uma chapa aquecedora. Depois de formado o filme, foram feitos MEV e EDX do mesmo. Para preparar o CdS foi necessário um procedimento um pouco mais complexo, que é a deposição por banho químico, onde é feita uma mistura de reagentes e mergulhado o substrato nesta mistura. Ocorreram reações químicas cujo resultado foi a formação do CdS, que ocorre em toda a superfície do recipiente e do substrato imerso na solução. As mesmas caracterizações feitas no TiO₂ foram feitas no CdS, ambos mostraram uma boa uniformidade, também foi observado que os filmes mostraram uma boa aderência ao substrato. A fim de comprovar a aplicatividade dos filmes para fins fotovoltaicos, preparou-se um protótipo de célula solar fotovoltaica, que foi colocada em contato com a luz solar para assim medir a corrente elétrica e a diferença de potencial. Também foram medidos os mesmos parâmetros no escuro, para comparação de resultados e comprovação da geração de energia elétrica através do contato com a luz. Através dos resultados destes testes, concluiu-se que os filmes apresentaram o efeito fotoelétrico, sendo assim, aplicáveis em células solares fotovoltaicas.

Palavras - chave: Células Solares, Filmes Finos, Energia Solar, Fotovoltaica, CdS, TiO₂.

ABSTRACT

This work is dedicated to the deposition and characterization of thin films of cadmium sulfide and titanium dioxide for application in photovoltaic solar cells. Each film is deposited by a different process. The reagent TiO₂ brand Vetec, was mixed with hydrochloric acid in aqueous solution forming a dispersion. This dispersion is spread on the glass substrate and then heated with a plate heater. After the deposit, were made SEM and EDX of the films. In order to prepare CdS a more complex process called chemical bath deposition was required, made of a mixture of reagents with the substrate immersed in it. Chemical reactions occurred which result was the formation of CdS, which occurs across the surface of the container and the substrate immersed in the solution. The same characterizations were carried out on TiO₂ in CdS, showed in both good uniformity, was also observed that the films showed good adhesion to the substrate. In order to prove that films are applicable for photovoltaic energy conversion, a prototype of a solar photovoltaic cell was prepared, which was placed in contact with a type of light for measuring electrical parameters like the electric current and potential difference. We also measured the same parameters in the dark, for comparison of results and to prove power generation in contact with the light. The research tests provides evidence that films showed the photoelectric effect, therefore, applicable in photovoltaic solar cells.

Keywords: Solar Cells, Thin Films, Solar Energy, Photovoltaic, CdS, TiO₂.

LISTA DE ABREVIATRAS E SIGLAS

BC	Banda de Condução
BV	Banda de Valência
CA	Califórnia
CAPES	Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
CBD	Chemical Bath Deposition
CNTs	Carbon Nanotubes
CVD	Chemical Vapor Deposition
EDTA	Ácido Etilenodiamino Tetra-Acético
EDX	Energia Dispersiva de Raios-x
EUA	Estados Unidos da América
ET	Equação do Tempo
FR	França
JP	Japão
LL	Longitude Local
LP	Longitude Padrão
MBE	Molecular Beam Epitaxy
MEV	Microscopia Eletrônica de Varredura
MOCVD	Metal Organic Molecular Beam Epitaxy
NASA	National Aeronautics and Space Administration
pН	Potencial Hidrogeniônico
QDSCs	Quantum Dots Solar Cells
QSP	Quantidade Suficiente Para
TLP	Tempo Local Padrão
TSA	Tempo Solar Aparente
UK	United Kingdom

LISTA DE FIGURAS

FIGURA 2.1	Modelo de célule solar de filmes finos de CdTe/CdS	17
FIGURA 2.1		17
FIGURA 2.2	Esquema da celula de Gratzel.	18
FIGURA 2.3	Imagens de nanotubos de T_1O_2 em uma menor (a) e maior	
	ampliações.	19
FIGURA 2.4	Nanohastes de CdSe	20
FIGURA 3.1	Esquema de bandas de um semicondutor	23
FIGURA 3.2	Estrutura básica dos flavonóides	28
FIGURA 3.3	Estrutura básica de antocianina	28
FIGURA 4.1	Célula solar esquematizada	29
FIGURA 4.2	Composição do protótipo de célula solar fotovoltaica	30
FIGURA 4.3	Protótipo de Célula Solar no ambiente de iluminação	
	controlada	30
FIGURA 4.4	Lâmina de vidro usada como substrato	32
FIGURA 4.5	Chapa aquecedora	32
FIGURA 4.6	Filme fino de TiO ₂ depositado no substrato	33
FIGURA 4.7	Imersão do filme de TiO ₂ no corante orgânico	34
FIGURA 4.8	TiO ₂ com corante sendo depositado sobre o vidro	35
FIGURA 4.9	Filme fino de Sulfeto de Cádmio depositado no substrato de	
	vidro	37
FIGURA 4.10	Filme de CdS com o contato elétrico	38
FIGURA 4.11	TiO ₂ com corante e o contato elétrico	38
FIGURA 4.12	Segunda camada de TiO ₂ sendo depositada	38
FIGURA 4.13	Filme de TiO ₂ com o condutor elétrico entre duas camadas	39
FIGURA 4.14	Célula solar	39
FIGURA 4.15	Esquema do circuito montado com a célula fotovoltaica e um	
	resistor	40
FIGURA 5.1	Filme de CdS com 20hs de deposição ampliado 5000x	42
FIGURA 5.2	Filme de CdS com 26hs de deposição ampliado 5000x	43
FIGURA 5.3	Filme de CdS com 20hs de deposição ampliado 10000x	43
FIGURA 5.4	Filme de CdS 20hs de deposição ampliado 25000x	44

FIGURA 5.5	MEV de um filme fino de CdS	44
FIGURA 5.6	Filme de TiO ₂ ampliado 5000x	45
FIGURA 5.7	Filme de TiO ₂ ampliado 10000x	45
FIGURA 5.8	Filme de TiO2 ampliado 25000x	46
FIGURA 5.9	Filme de TiO2 ampliado 35000x	46
FIGURA 5.10	Filme fino de TiO ₂ com uma camada de C e somente TiO ₂	47
FIGURA 5.11	EDX do filme fino de CdS	48
FIGURA 5.12	EDX do filme fino de Ti O_2	49

LISTA DE TABELAS

TABELA 2.1	Evolução	cronológica	dos	eventos	históricos	notáveis	no	
	desenvolv	imento da teci	nolog	ia fotovol	taica.			13
ΤΔΒΕΙ Δ <i>Λ</i> 1	Relação d	os Reagentes	utiliz	ados nara	a preparac	ão da solu	cão	

TABELA 4.1Relação dos Reagentes utilizados para a preparação da solução
para a formação do CdS.36

SUMÁRIO

1 INTRODUÇÃO	. 14
2 REVISÃO BIBLIOGRÁFICA	. 16
2.1 Efeito Fotovoltaico: Descoberta e Histórico	. 16
2.2 Desenvolvimento Atual	. 19
3 FUNDAMENTAÇÃO TEÓRICA	. 24
3.2 Semicondutores	. 24
3.3 Bandas de Energia e Semicondutores tipo-n e tipo-p	. 24
3.4 Técnicas de deposição de filmes semicondutores	. 26
3.4.1 Técnicas cerâmicas (Pressed Pellets, Silk Screen e Painting)	. 26
3.4.2 Técnicas Químicas (Deposição Química e Spray Pirólise)	. 27
3.4.3 Deposição de vapores químicos (CVD e MOCVD)	. 27
3.4.5 Técnicas eletrolíticas (Eletrodeposição Catódica e Anodização)	. 28
3.5 Corante orgânico	. 28
4 MATERIAIS E MÉTODOS	. 30
4.1 Características dos Filmes e Configuração da Célula	. 30
4.2 Características Elétricas do Protótipo	. 31
4.3 Filme Fino de TiO ₂	. 32
4.4 Filme fino de TiO ₂ com corante orgânico	. 35
4.5 Filme Fino de CdS	. 37
4.6 Preparação da célula solar fotovoltaica	. 38
Figura 4.14 – Célula solar	. 40
4.7 Características elétricas da célula solar fotovoltaica	. 40
4.8 Equipamentos utilizados na realização das medidas	. 42
5 RESULTADOS E DISCUSSOES	. 43
5.1 Microscopia Eletrônica de Varredura do filme de CdS	. 43
5.2 Microscopia Eletrônica de Varredura dos Filmes de TiO_2	. 46
5.3 Espectroscopia de Energia Dispersiva de Raio-X (EDX)	. 48
5.3.1 Filme de CdS	. 49
5.3.2 Filme de 110_2	. 50
5.4 Espessura dos Filmes	. 51
5.5 Testes Eletricos na Celula Fotovoltaica	. 51
0 CONCLUSAO	. 33
ANEAO A – Fundamentos de Engemiaria Solar	. 34
U S01	. 55
Equação do Longitude	. 50
Ângulos importantes para o estudo da energia solar	. 50
Angulos importantes para o estudo da energía solar	. 51
Decinação solar O	. 37
Angulo da altitude solar α	. 39
Angulo azimulai solar z	. 00
O angulo de incluencia, o Diagramas do Caminho Solar	. 00 62
A DÊNDICE A EDY do filme fino de CdS	. UJ 61
A DENDICE $A = EDA$ do filme fino de CuS	. 04 72
AI ENDICE D – EDA do Innie mio de $11O_2$, 73 Q1
	. 01

1 INTRODUÇÃO

A energia solar vem sendo utilizada desde o início de nossa existência. Nosso alimento, tem origem na fotossíntese, um processo que utiliza a luz como fonte de energia para a realização de reações químicas que participam da nutrição dos vegetais. Quando utiliza-se a energia dos ventos, não se percebe que estes têm sua origem na diferença de temperatura entre massas de ar, recebendo assim, a influência da energia solar.

A quantidade de energia demandada hoje a nível mundial, e os impactos ambientais resultantes da utilização de fontes não renováveis e/ou poluentes apresentam uma necessidade cada vez maior de utilização de fontes renováveis de energia. Nos últimos anos, tem aumentado o interesse da sociedade por questões ligadas à proteção do ambiente, pois os efeitos causados pela poluição acumulada de todos os tempos resultante da queima do petróleo, por exemplo, têm ajudado a causar efeitos desastrosos como, o aquecimento global. Essa conscientização da sociedade induz à preservação dos recursos energéticos e à procura de novos recursos alternativos não - poluentes, como a utilização da energia solar (NELSON, 2003).

As novas tecnologias fotovoltaicas que utilizam células solares a partir da técnica de filmes finos apresentam grandes possibilidades na redução de custos. Dentre os motivos que tornam a energia solar bastante vantajosa estão sua capacidade modular (várias células unidas formando um módulo), a rápida instalação, fácil manutenção e principalmente por possuir uma fonte de energia praticamente inesgotável, o Sol. (FREITAS, 2006)

A tecnologia de filmes finos vem promissoriamente conquistando o mercado, que apesar de ser ainda dominado pelo silício, está começando a depositar esperanças nos filmes finos, com vários motivos, como a quantidade de material empregada na confecção dos filmes e a relativa simplicidade na obtenção desses materiais.

Um dos grandes fatores que reduzem a motivação na utilização da energia solar fotovoltaica como uma das principais fontes energéticas é o baixo rendimento dos módulos, o que pode ser compensado quando se vê a fonte dessa energia como ilimitada, gratuita e de captura praticamente inofensiva ao meio ambiente.

O objetivo deste trabalho é depositar e analisar filmes finos de CdS e TiO_2 para o uso em células solares, verificando a estrutura morfológica (MEV) e composição química (EDX). Os testes citados apenas demonstram a pureza e uniformidade dos filmes, mas não lhes dão a garantia de uma aptidão para o uso em célula solares, por isso ainda neste trabalho, foi construído um protótipo de célula solar fotovoltaica com os filmes depositados.

Com o protótipo foram feitos testes preliminares, para comprovar o funcionamento do mesmo, não objetivando encontrar características específicas da célula, mas mostrando que os filmes depositados podem ser utilizados em aplicações fotovoltaicas.

2 REVISÃO BIBLIOGRÁFICA

2.1 Efeito Fotovoltaico: Descoberta e Histórico

O efeito fotovoltaico tem como principio físico primordial o efeito fotoelétrico, que pode ser descrito como o surgimento de uma DDP entre dois eletrodos ligados a um sólido ou líquido, quando este é iluminado.

Em 1839, o físico francês Edmond Becquerel descobriu que certos materiais geram corrente elétrica ao ser expostos a luz e em 1887, Heinrich Hertz, analisando a produção de faíscas entre dois materiais com potenciais diferentes, notou que quando surgia uma faísca em uma das superfícies, também surgia uma faísca na outra superfície. Porém, por ser de pequenas dimensões, era difícil de ser visualizada, devido a este fato, Hertz construiu uma proteção sobre o sistema para evitar a dispersão da luz, contudo, essa adaptação causou uma diminuição na faísca secundária. Na seqüência dos seus experimentos, ele constatou que o fenômeno não era de natureza eletrostática, pois não havia diferença se a proteção fosse feita de material condutor ou isolante. (GOETZBERGER, 2003)

Após uma série de outros testes, Hertz confirmou o seu palpite de que a luz poderia gerar faíscas. Também chegou à conclusão de que o fenômeno deveria ser devido apenas à luz ultravioleta. Em 1888, estimulado pelo trabalho de Hertz, Wilhelm Hallwachs observou que lâminas de Zn, Rb, K, Na e outras carregadas negativamente unidas a um eletroscópio, produziam uma descarga elétrica ao serem iluminadas. Essa foi apenas uma demonstração do efeito fotovoltaico, que foi caracterizado pelo aparecimento de um fluxo eletrônico em uma superfície iluminada. Desde sua descoberta até os dias atuais, foram inúmeros os desenvolvimentos de novas tecnologias e aperfeiçoamento de tecnologias já existentes no ramo da energia solar fotovoltaica. (EISEBERG, 1979)

Um histórico do desenvolvimento do efeito fotovoltaico, e sua aplicação em células solares fotovoltaicas pode ser visto na Tabela 2.1, onde é mostrado o desenvolvimento da tecnologia fotovoltaica no período de 1839 à 2002.

Tabela 2.1 – Evolução cronológica dos eventos históricos notáveis no desenvolvimento da tecnologia fotovoltaica.

Ano	Evento Histórico
1839	Becquerel (FR) descobriu efeito fotogalvânico em eletrólitos líquidos.
1873	Smith (UK) descobriu fotocondutividade no Se sólido.
1877	Adams e Day (UK) descobriram fotoregeneração de corrente em tubos Se; a
	primeira observação do efeito fotoelétrico em sólidos.
1883	Fritz (EUA) faz a primeira célula solar de grande porte usando filmes sólidos de
	Se.
1954	Primeiras células solares com eficiência de 6% são reportadas: Si (Bell Lab,
	EUA) and Cu2S/CdS (Air Force, EUA).
1955	Hoffman Electronics (USA) oferece células solares fotovoltaicas de silício com
	2% de eficiência à \$1500/W.
1958	Satélite NASA Vanguard com matriz de geração solar de Si.
1959	Hoffman Electronics (USA) oferece células solares fotovoltaicas de silício com
	10% de eficiência.
1963	Sharp Corp (JP) produz os primeiros módulos de Si.
1966	Observatório astronômico orbital da NASA lançado com 1 kW de geração
	solar.
1970	Primeira célula solar feita com um heteroestrutura de GaAs por Alferov na
	URSS.
1972	Primeira conferência de energia solar fotovoltaica para incluir aplicações
	terrestres.
1973	Um grande ano para a energia fotovoltaica: A crise Mundial do petróleo
	estimula muitas nações a considerar fontes renováveis energia, incluindo solar
	fotovoltaica; Durante a conferência Cherry Hill nos EUA, (estabelecida pelo
	governo para financiar pesquisas em energia solar fotovoltaica); foi criada a
	primeira residência solar do mundo ligada em módulos solares, construídos com
	Cu ₂ S (não com Si) (Universidade de Delaware, EUA).
1974	Projeto Sunshine iniciado no Japão para promover o crescimento da indústria
	fotovoltaica e aplicações; Tyco (EUA) cresce uma fita de Si de 2,5 centímetros
	de largura para a energia fotovoltaica, a primeira alternativa para wafers de Si.
1975	Primeiro livro dedicado à ciência e tecnologia fotovoltaica: Solar Cells, da série

	de livros Semiconductors and semimetals, por Harold J. Hovell em 1975.
1980	Primeira célula solar de filmes finos com rendimento >10% usando
	$Cu_2S/CdS(EUA).$
1981	Arranjo de 350KW com concentradores instalados na Arábia Saudita.
1982	Primeira usina solar fotovoltaica com escala de 1MW (CA, EUA), com
	módulos de silício em rastreadores de dois eixos.
1984	Usina de 6MW instalada nas planícies Carrisa, CA EUA.
1985	Um grande ano para as células solares de Si de alta eficiência: Célula solar de
	Si com eficiência >20% sob luz solar padrão e > 25% com concentradores.
1986	Primeiro módulo de energia comercial feito com filme fino a-Si G4000 da arco
	Solar (EUA).
1987	Quatorze carros movidos com energia solar completam os 3200km da corrida
	World Solar Challenge (Austrália) com o vencedor atingindo em média
	70km/h.
1994	Célula de GaInP / GaAs com rendimento >30% é desenvolvida nos EUA.
1995	O projeto 1000 telhados é lançado na Alemanha para instalar sistemas
	fotovoltaicos em casas, o que desencadeou a presente legislação favorável à
	energia fotovoltaica na Alemanha, Japão e outros países.
1997	A produção mundial de energia fotovoltaica atinge 100MW por ano.
1998	Células solares de filmes finos de Cu(InGa)Se2 atingem 19% de eficiência, e o
	primeiro arranjo de concentradores para lançamento espacial é instalado na nave
	Deep Space 1 pelos EUA (5kW usando células de junção tripla GaInP/GaAs/Ge
	de alta eficiência).
1999	A potência mundial acumulada de energia solar fotovoltaica atinge 1GW.
2000	Criação do primeiro bacharelado em engenharia fotovoltaica e engenharia solar,
	UNSW, Austrália.
2002	A potência mundial acumulada de energia solar fotovoltaica atinge 2GW,
	dobrando em apenas 3 anos.

Fonte: KALOGIROU, S (2009)

2.2 Desenvolvimento Atual

Atualmente, as pesquisas voltadas para a conversão da energia solar em elétrica através de células solares fotovoltaicas de filmes finos está focada em alguns materiais, como o CdTe, CdS, CdO, TiO₂ e Cu(In,Ge)Se₂. As células solares de CdTe/CdS são as mais utilizadas em pesquisas atualmente, uma vez que já são produzidos comercialmente módulos solares desses materiais (ROMEO, 2004)

A célula solar de filmes finos de CdTe/CdS é a mais adequada para ser fabricada na forma de filmes finos (ROMEO, 2004), o modelo geral destas células é mostrado na figura 2.1.

Em 1972 foi publicado um artigo a respeito de células solares de filmes finos de CdTe / CdS em relatando uma eficiência de 6% (BONNET, 1972). Mais tarde, o valor de 10% de eficiência foi obtido (TYAN, 1982) 11 anos depois, uma eficiência de 15,8% foi atingida (FEREKIDES, 1993). Recentemente, relatou-se uma eficiência recorde de 16,5% (Wu et al., 2001).

Figura 2.1 – Modelo de célula solar de filmes finos de CdTe/CdS. (ROMEO, 2004)

Como óxido condutor transparente (TCO) podem ser utilizados vários materiais, como por exemplo o SnO₂ com resistência em torno de $10\Omega/m^2$, estanho dopado com In₂O₃ (ITO), que apresenta uma baixa resistividade (2,5 x $10^{-2}\Omega$ m), dentre outros materiais. No contato elétrico traseiro geralmente é utilizada uma placa metálica de baixa resistência, ou materiais condutores flexíveis (MATHEW, X. 2004).

Existem ainda as células solares fotovoltaicas de filmes finos sensibilizadas por corante, como a célula produzida neste trabalho. Os materiais mais utilizados neste tipo de célula são o TiO₂ (FREITAS F. E. 2006), e o CdO (MANE, 2005). O TiO₂ é

geralmente utilizado em células de Grätzel, representada esquematicamente na Figura 2.2, e funciona basicamente através da transferência de elétrons de um eletrólito que sofre oxiredução para o TiO_2 , que ao entrar em contato com a luz solar e com a ajuda da sensibilização do corante, se torna um aceitador de cargas negativas do eletrólito, repassando-as para o circuito.

Figura 2.2 – Esquema da célula de Grätzel. (FREITAS F. E. 2006)

Outros tipos de células orgânicas são compostas por polímeros plásticos, cuja eficiência de conversão de energia vem sido aumentada através da melhora na captação de radiação na célula solar (KANG, 2008).

Três corantes orgânicos com base em derivados de Bisindolylmaleimida (I1, I2 e I3) foram sintetizados e investigado como sensibilizadores para a aplicação em células solares nanocristalinas de TiO_2 (ZHANG, 2009). O grupo indol, grupo maleimida funcionam como grupo carboxílico doador de elétrons, e o grupo aceitador, respectivamente.

A eficiência de conversão de energia solar em elétrica com irradiação de 100mW/cm² é de 2,07%(ZHANG, 2009)., para as células solares com base em I2 e de 1,87% e 1,50% para I1 e I3, respectivamente. Através destes resultados, foi sugerido que sensibilizadores orgânicos estudados eram candidatos promissores para o uso em células solares sensibilizadas por corante.

Células solares compostas por materiais mais complexos como o Cu(In,Ga)Se₂ (CIGS₂) depositados por eletrodeposição, (LINCOT 2004), obtiveram rendimento de 11,3%. (NAKADA, 2004) Uma melhora no rendimento deste tipo de célula foi feita com a utilização do ZnO:Al como TCO, rendimentos de 12,8%.

Utilizando procedimentos mais complexos, (YAMAGUCHI, 2004) foram construídas células solares fotovoltaicas de múltiplas junções semicondutoras, compostas de 14 camadas. Células desse tipo possuem um alto custo de fabricação, porém um rendimento mais elevado em relação às outras tecnologias (31-32%).

As propriedades fotoeletroquímicas de TiO₂, CdS e TiO₂/CdS foram estudadas (ALIEV, 2009) com a confecção de um dispositivo composto por um filme sólido de TiO₂, um eletrólito 0,5M Na₂SO₄ dissolvido em água bidestilada, e um filme de CdS. O CdS está sujeito à corrosão, liberando íons Cd²⁺ na solução. O filme de TiO₂ é resistente à corrosão, evitando a liberação dos íons Cd²⁺ e fazendo o sistema TiO₂/CdS apresentar uma boa fotosensitividade na faixa do visível.

Algumas heterojunções de CdS/TiO₂ já foram testadas, como por exemplo, utilizando nanotubos de TiO₂ (GAO, 2009). Nanopartículas de CdS são depositadas em um filme composto por uma matriz de nanotubos unidimensionais de TiO₂, que podem ser vistos na Figura 2.3. Através de testes foi detectada na heterojunção, uma densidade de corrente de 5.6mA/cm² em circuito aberto.

Figura 2.3 – Imagens de nanotubos de TiO₂ em uma menor (a) e maior ampliações

Células solares baseadas em Si, células sensibilizadas por corantes e outras células orgânicas, estão sujeitas a um limite teórico na eficiência de aproximadamente 30% (TIEDJE, 1984). Esse valor foi encontrado através de um método que permitiu o cálculo da recombinação limite de radiação para o desempenho de células solares. As células utilizadas foram de silício cristalino, e o rendimento máximo calculado foi de 29,8%.

Estão sendo estudados novos avanços tecnológicos no campo de células solares que utilizam nanotubos de carbono, CNTs, que são uma proposta para o desenvolvimento de células solares com eficiência acima do limite teórico (SUBASH, 2009).

Existem ainda modelos de célula solar híbrida composta de uma célula heterojunção e fotoeletroquímica. Na célula híbrida, uma fina película de nanotubos duplos de carbono formam um heterojunção com os nanofios de silício e também funciona como eletrodo transparente para a célula fotoeletroquímica. O desempenho do gerador pode ser facilmente ajustado, controlando a densidade de nanofios de silício. Sob iluminação de 100mW/cm², uma eficiência de conversão de energia de 1,29% foi obtida (SHU, 2009).

Outro tipo de células híbridas são feitas com nanohastes semicondutores juntamente com polímeros. Uma célula composta por nanohastes de CdSe com comprimentos de 6 à 60 nanômetros (Figura 2.4) conjugados com o polímero hexiltiofeno apresenta uma eficiência externa quântica de 54% e uma eficiência monocromática de 6.9% (HUYNH, 2002). Com condições de 100mW/cm², foi obtida uma eficiência global de 1.7%.

Figura 2.4 – Nanohastes de CdSe (HUYNH, 2002)

A criação de uma tinta de nanocristais coloidais inorgânicos adequados para uso em um processo de revestimento é um passo fundamental no desenvolvimento de células solares de baixo custo. Uma síntese solução simplista de nanocristais CuInSe₂ calcopirita e a demonstração que as tintas com base em estes nanocristais podem ser usadas para criar células solares simples, foram comprovadas com as primeiras células apresentando uma eficiência de 3,2% sob iluminação de 1000W/m²(GUO, 2008). Outro tipo de células solares que tem sido considerada a nova geração de células fotovoltaicas são as células solares sensibilizadas por pontos quânticos, as QDSCs, estão atraindo grande atenção como sendo uma nova geração de células fotovoltaicas (MORÁ-SERÓ, 2009). Nestas células, os sensibilizadores dos semicondutores são colocados sob a forma de pontos quânticos. A eficiência deste tipo de célula pode chegar a 44% (MORÁ-SERÓ, 2009), porém, infelizmente, a utilização prática destes dispositivos ainda não atinge completamente sua real finalidade, que é a sensibilização em células solares.

3 FUNDAMENTAÇÃO TEÓRICA

3.2 Semicondutores

O efeito fotovoltaico acontece em materiais denominados semicondutores que podem ser definidos como sólidos cristalinos de condutividade elétrica intermediária entre condutores e isolantes (NEAMEN, 2003). Os elementos semicondutores podem ser tratados quimicamente para transmitir e controlar uma corrente elétrica. Seu emprego é importante na fabricação de componentes eletrônicos tais como diodos, transistores e outros de diversos graus de complexidade tecnológica, microprocessadores, e nanocircuitos usados em nanotecnologia. Portanto, atualmente o elemento semicondutor é primordial na indústria eletrônica e confecção de seus componentes. Para uma melhor compreensão da definição e da natureza dos materiais semicondutores, faz-se necessário, o conhecimento do modelo de bandas de energia.

3.3 Bandas de Energia e Semicondutores tipo-n e tipo-p

Na composição de uma estrutura cristalina, os átomos permanecem muito próximos entre si, e os elétrons de cada um dos átomos não mais descrevem seu movimento em torno do núcleo, resultando assim uma influência mútua, causando uma subdivisão dos níveis de energia. Para cada camada eletrônica aparecem uma ou mais bandas de energia, na qual ocorrem os valores de energia permitidos (FREITAS, 2006). Como existe um número muito grande de átomos em um cristal, existem muitos elétrons para cada camada, dessa forma, aparecem muitos valores de energia, e esses são muito próximos uns dos outros de forma que se pode considerar a faixa como quase contínua, denominada banda de energia, ou seja, os elétrons de determinada camada podem assumir qualquer valor de energia dentro da banda. Chama-se, neste caso, de banda de energia permitida.

Existem também no cristal, valores de energia que não são assumidos por elétron algum. Tais valores, só podem estar entre duas bandas permitidas, e recebem o nome de bandas de energia proibidas. A banda de energia mais alta de um cristal, na qual todos os níveis de energia estão ocupados por elétrons de valência, é chamada de Banda de Valencia (BV). Na Figura 3.1, pode-se ver esquematicamente a posição relativa das bandas. Os valores de energia dessa banda são característicos dos elétrons de valência, pertencentes às ligações covalentes. Quando em um semicondutor um elétron se afasta de uma ligação covalente – tornando-se, portanto, livre – o seu nível de energia se situa em uma banda permitida criada imediatamente acima da BV. Essa banda é chamada de Banda de Condução (BC), pois os elétrons que a ocupam são considerados como livres (FREITAS, 2006). A distância entre a BV e a BC, ou seja, a banda proibida é, em termos de energia, a quantidade de energia mínima necessária para o elétron ser liberado de sua ligação covalente. Um esquema representativo das bandas pode ser visto na figura 3.1.

Figura 3.1 : Esquema de bandas de um semicondutor (FREITAS F. E., 2006 Modificado)

Quando um fóton, com energia igual ou superior a energia da banda proibida, atinge um semicondutor, esse pode ser absorvido por um elétron encontrado na banda de valência, que desta forma será excitado até a banda de condução. Em seu lugar teremos um buraco ou lacuna. Através deste processo ótico é formado um par elétron-buraco.

Existem dois tipos de semicondutores: o intrínseco, cuja concentração de portadores de carga positiva e igual a concentração de portadores de carga negativa; o extrínseco, que possui suas características determinadas por impurezas (NEAMEN, 2003). No caso dos semicondutores extrínsecos a condutividade é mais elevada, e é caracterizada por um processo especifico de condução via elétrons ou buracos. Um aspecto interessante no caso destes materiais é que a concentração dos portadores de carga pode ser variada dopando-se o material com pequenas quantidades de elementos que possibilita um acréscimo no número de elétrons ou buracos, que lhe confere a nomenclatura de n ou p.

No caso mais comum de um semicondutor intrínseco, como os silícios, os átomos deste, possuem quatro elétrons de valência, que se ligam aos átomos vizinhos formando uma rede cristalina. Tornando esse semicondutor extrínseco, dopando-o com átomos que possuem cinco elétrons na camada de valência, como o fósforo ou o arsênio, haverá um elétron em

excesso que não será emparelhado, tornando sua ligação bastante fraca com o átomo de origem. Com isso, adicionando um pouco de energia, esse elétron pode ser liberado da BV e encaminhado para a BC. O fósforo e o arsênio são um dopante doador de elétrons chamados dopantes do tipo n ou impurezas do tipo n, e o silício dopado com esses materiais, um semicondutor do tipo-n (NEAMEN, 2003).

Tendo como exemplo ainda o silício, se a impureza a ser introduzido possuir apenas três elétrons na camada de valência, como o boro ou o índio, o que causa a vacância de um elétron para satisfazer as ligações com o silício, resultando em um "buraco" (FREITAS, 2006). Com um pouco de energia térmica, um elétron de um átomo vizinho pode passar para essa posição, fazendo com que o buraco se desloque. O boro e o índio são, portanto, chamados de aceitadores de elétrons ou dopante tipo p, Consequentemente, o silício dopado com algum tipo de material com menos de quatro elétrons na última camada, é denominado semicondutor do tipo-p.

Para a montagem da célula solar fotovoltaica, é necessário o uso de um filme semicondutor do tipo n e outro do tipo p (GOETZBERGER, 2003), formando assim a chamada junção p-n, que ao receber a energia luminosa solar, apresenta o efeito fotoelétrico, gerando uma diferença de potencial entre os dois filmes.

3.4 Técnicas de deposição de filmes semicondutores

Nessa seção serão apresentadas algumas técnicas utilizadas para a deposição de filmes finos semicondutores, no qual estão inseridas as técnicas utilizadas experimentalmente neste trabalho.

3.4.1 Técnicas cerâmicas (Pressed Pellets, Silk Screen e Painting)

Na técnica *Pressed Pellets* o pó do material semicondutor é prensado na forma de pastilhas e em seguida submetido a um processo de sinterização no qual duas ou mais partículas sólidas se aglutinam pelo efeito do aquecimento em uma temperatura inferior à de fusão, mas suficientemente alta para permitir a difusão dos átomos das duas redes cristalinas. Nesta técnica, a pastilha semicondutora não precisa de substrato, pois o filme resultante é rígido o suficiente. (CHAGAS, 1984)

O *Painting* envolve a diluição do pó semicondutor em um solvente. Em seguida é feita a pintura no substrato com o pó dissolvido, de tal forma que o semicondutor diluído seja

espalhado sob a superfície do substrato. A seguir deve-se utilizar alguma técnica de secagem para que o solvente evapore e o filme sólido fique depositado no substrato.

O método *Silk-Screen* é largamente utilizado na pintura de tecidos, e pode também ser usado para a deposição de filmes. A técnica consiste em formar um colóide onde o pó do semicondutor é diluído em algum solvente, em seguida essa dispersão coloidal é espalhada sobre uma tela com pequenos furos que está posta sob o substrato onde se deseja depositar o filme. A solução passa pelos furos e atinge o substrato formando uma superfície relativamente homogênea, melhor inclusive do que a obtida com o *Painting*. (CHAGAS, 1984)

3.4.2 Técnicas Químicas (Deposição Química e Spray Pirólise)

A Deposição Química é usada principalmente na preparação de calcogenetos de chumbo e semicondutores do tipo II-IV e IV-VI. Os filmes são formados pelas reações entre os íons metálicos e os íons sulfetos e selenetos (BISWAS, 2008). Estes estão presentes, por exemplo, na solução proveniente da hidrólise da tiuréia (para o CdS) ou selenosulfatos (para CdSe).

A técnica *Spray* pirólise consiste na deposição de uma solução líquida no substrato através de um dispositivo de *spray*, sob aquecimento (FREITAS, 2006). A 'solução líquida' no caso dos semicondutores pode ser obtida da mesma forma que nas técnicas cerâmicas, o diferencial é que geralmente os filmes depositados dessa forma necessitam de tratamento térmico ou de uma forma rápida para a evaporação do solvente.

3.4.3 Deposição de vapores químicos (CVD e MOCVD)

A deposição de vapores químicos (CVD *Chemical Vapor Deposition*) e a deposição de vapores químicos organometálicos (MOCVD *Metal Organic Chemical Vapor Deposition*) são técnicas em que os gases que contém os elementos que formarão o filme são transportados para o substrato por um fluxo de gás inerte purificado. Na superfície aquecida do substrato ocorrem reações que formam o semicondutor. A diferença entre as técnicas está no tipo de gás que contém os elementos do semicondutor a ser formado. Enquanto a técnica CVD usa gases inorgânicos, a técnica MOCVD usa gases organometálicos (CHAGAS, 1984).

3.4.4 Técnicas de vácuo (Evaporação, *Sputering* e MBE)

A Evaporação é a técnica de vácuo mais comum, e usa o próprio semicondutor ou seus elementos componentes para a preparação do filme.

Na técnica *Sputering*, um alvo do material a formar o filme é atingido continuamente por íons de um gás contido em uma câmara de vácuo. A colisão dos íons com átomos da superfície do alvo faz com que esses últimos ganhem energia suficiente para superar a energia de ligação e sejam ejetados em direção ao substrato, onde formam o filme.

Na Epitaxia de Feixe Molecular (MBE *Molecular Beam Epitaxy*) os materiais são evaporados de diferentes fornos em cima de um substrato aquecido. Portas (*shutters*) na frente desses fornos controlam qual material atinge o substrato, e a temperatura dos fornos controla a razão de deposição. A máquina de MBE permite que sejam utilizadas técnicas para monitorar o crescimento do filme (CHAGAS, 1984).

3.4.5 Técnicas eletrolíticas (Eletrodeposição Catódica e Anodização)

Nas técnicas eletrolíticas, os elementos dos filmes a serem formados se encontram no substrato ou dissolvidos em soluções líquidas (eletrólito). Na eletrodeposição catódica, a deposição do filme no substrato ocorre após uma ou mais reduções nos componentes do semicondutor, contidos no eletrólito.(CHAGAS, 1984)

Na anodização, o componente mais eletropositivo (metálico) do semicondutor é anodizado em um eletrólito que contenha o elemento mais eletronegativo na forma reduzida.

3.5 Corante orgânico

Considera-se corante natural, o pigmento ou corante inócuo extraído de substância vegetal ou animal. O corante caramelo é o produto obtido a partir de açúcares pelo aquecimento a temperatura superior ao seu ponto de fusão. Já o corante artificial é a substância obtida por processo de síntese (NOGUEIRA, 1998) (com composição química definida).

Os corantes artificiais fornecem ampla gama de cores, proporcionando praticamente todas as tonalidades do espectro visível de cor. Certos corantes alimentícios naturais e artificiais também têm recebido uma considerável atenção para aplicações em dispositivos optoeletrônicos, por conterem a presença de uma substância chamada flavonóides (Figura 3.2).

Sob certas condições, estes apresentam o efeito fotoelétrico (FREITAS, 2002), isto e, liberam elétrons com facilidade pela absorção de fótons. Uma característica importante que os tornam propícios para o uso em células solares é que estes corantes podem ser facilmente obtidos por processos extrativos convencionais e utilizados na construção de células solares reduzindo ainda mais o custo de produção.

As principais fontes de flavonóides são as frutas cítricas tais como o limão e a laranja, e frutas como cereja, uva, ameixa, pêra, maca e mamão, sendo encontrados em maiores quantidades na polpa do que no suco (KALYANASUNDARAM, 1998). Pimenta verde, brócolis, repolho roxo, cebola e tomate também são excelentes fontes de bioflavonóides.

Figura 3.2 - estrutura básica dos flavonóides (FREITAS F. E., 2006)

Os flavonóides encontrados nos alimentos são classificados em diversas subclasses, incluindo as antocianinas, as antocianidinas, os flavonois, as flavononas, as flavonas, as catequinas, os flavonóis e seus precursores metabólicos conhecidos como chalconas. A estrutura geral destes compostos é constituída por dois anéis benzênicos conectados por uma ponte de três carbonos como mostra a Figura 3.3 (NOGUEIRA, 1998).

A classe de flavonóides conhecidas como antocianinas e responsável pela coloração vermelha e roxa de muitas frutas e flores. O corante de antocianina mais comum e a cianina que dá coloração vermelha e azulada de papoulas e flores. O vasto repertório de cores apresentado na faixa entre o vermelho e o azul, e resultado do complexo entre esses polifenois, pectinas e íons metálicos (NOGUEIRA, 1998). O principal papel biológico da antocianina e a potencializarão da fotossíntese. A Figura 3.3 mostra uma estrutura básica de uma antocianina.

Figura 3.3 – Estrutura básica de antocianina (FREITAS F. E., 2006)

4 MATERIAIS E MÉTODOS

4.1 Características dos Filmes e Configuração da Célula

O filme de TiO_2 possui características semicondutoras do tipo n, com elétrons que podem ser conduzidos da BV para a BC com a introdução de uma pequena quantidade de energia térmica, fazendo assim surgir uma corrente elétrica na superfície do filme. O CdS, possui características do tipo p, que induzirá o deslocamento de 'buracos' em sua estrutura através também da introdução de energia térmica (FREITAS, 2006).

O filme de TiO₂, foi obtido experimentalmente por uma versão adaptada da técnica *Spray* Pirólise, que originalmente consiste na deposição de um material com um *spray* sobre um substrato que sofre aquecimento em temperatura constante. Para melhorar a uniformidade do filme, e tornar o procedimento de deposição mais prático, foram realizados testes experimentais de deposição, que são detalhados na seção 4.3.

O CdS foi obtido pela técnica CBD (*Chemical Bath Deposition*), que trata-se da mistura de reagentes para a produção de uma solução no qual o substrato de vidro deve ser mergulhado na solução para que assim o filme seja formado em sua superfície no decorrer da reação.

A idéia inicial para a produção de um protótipo de célula solar fotovoltaica com os filmes depositados está esquematizada na Figura 4.1:

31

Figura 4.1 – Célula solar esquematizada. (1) – Substrato, (2) – Filme condutor, (3) – $TiO_2 e (4) - CdS$.

Nesta configuração, os contatos elétricos são filmes condutores de SnO_2 , depositados também por spray pirólise, porém utilizando temperaturas mais elevadas do que as utilizadas no TiO₂. Foram realizados testes de deposição de filmes finos de SnO_2 , contudo os filmes depositados não apresentavam a transparência nem a condutividade desejada, não podendo assim ser utilizados como condutores transparentes, criando a necessidade da utilização de outro material condutor.

A configuração do protótipo de célula solar fotovoltaico foi então modificada, substituindo o TCO por uma camada de tinta prata condutora, de acordo com a Figura 4.2.

Figura 4.2 – Composição do protótipo de célula solar fotovoltaica: (1) – substrato, (2) – TiO_2 , (3) – CdS, (4) – tinta prata.

4.2 Características Elétricas do Protótipo

As características elétricas medidas foram a resistência elétrica do filme condutor, a corrente de circuito aberto da célula no escuro, a diferença de potencial da célula no escuro, a corrente de circuito aberto com a incidência de luz e a diferença de potencial com a presença de luz.

Para a realização dessas medidas foi necessário a montagem de um sistema para incidir de forma controlada a luz sobre a célula solar. O sistema é ilustrado na Figura 4.3:

Figura 4.3 - Protótipo de Célula Solar no ambiente de iluminação controlada

Como mostrado na figura 4.3, toda a luz irradiada pela lâmpada fica restrita ao ambiente interno do cilindro, se refletindo ao entrar em contato com qualquer parede do mesmo. A célula foi testada eletricamente com a aferição de grandezas elétricas em um circuito elétrico detalhado na seção 4.7, utilizando-se um multímetro digital que enviava os dados coletados diretamente para o computador através de uma porta USB.

4.3 Filme Fino de TiO₂

Foram testadas quatro formas de deposição para o filme de Dióxido de Titânio, onde em todas elas foi necessário um sistema de aquecimento por condução (chapa), ou por secagem (jato aquecido de ar) para a evaporação do solvente. Para a deposição dos filmes, antes do aquecimento, foi necessário um procedimento para espalhar a solução na superfície do vidro. Foram adotados dois caminhos para esse procedimento:

- a) Espalhamento da solução através de um spray
- b) Espalhamento da solução através de uma pipeta feita de material plástico

Através de experimentos realizados, constatou-se que todo o material que entrar em contato com a solução de TiO_2 deve ser plástico, pois ao entrar em contato com o vidro, o dióxido de titânio adere facilmente, dificultando a limpeza dos equipamentos.

O material necessário para a preparação da solução e a deposição foi:

- a) Substrato de vidro borosilicato (fig. 4.4)
- b) Reagente Óxido de Titânio IV VETEC 99,5%
- c) Solução aquosa de ácido clorídrico 0,5Mol/L
- d) Chapa de aquecimento (fig. 4.5)
- e) Dispositivo para realização de Spray
- f) Reagente Triton X-100

Figura 4.4 – Lâmina de vidro usada como substrato

Figura 4.5 - Chapa aquecedora

Foram dissolvidos 7,988g de Óxido de Titânio IV na solução de Ácido Clorídrico 0,5Mol/L formando assim uma suspensão de TiO₂ em HCl com concentração de 0,1Mol/l. Em seguida, foi adicionado 1ml de Triton X-100 à solução, usado para melhorar a adesão do filme na superfície do vidro. A suspensão de TiO₂ foi colocada no *spray*, no caso da deposição com spray e na pipeta no caso do espalhamento com a mesma. Os substratos de vidro foram devidamente lavados com água e detergente neutro, e em seguida banhados com álcool isopropílico para evitar contaminação do filme.

Para a deposição experimental com aquecimento através da chapa aquecedora, a temperatura foi regulada para 200°C, realizando assim a evaporação do HCl aquoso presente na solução espalhada no substrato. Foi constatado em experimentos anteriores que quando a evaporação demora, formam-se deformidades na superfície do filme devido à não-uniformidade no processo de secagem.

A deposição da dispersão de TiO_2 com HCl no vidro foi testada com a utilização de um *spray*, e com o simples espalhamento através de uma pipeta plástica. Ambos tiveram

resultados semelhantes, porém a deposição com o espalhamento feito pela pipeta é mais prático do que com o *spray*, pois com a contínua utilização do dispositivo de *spray*, ocorre a obstrução do orifício por onde a solução de TiO_2 é lançada, deixando o filme depositado não uniforme. A Figura 4.6 mostra o filme depositado no substrato de vidro.

Figura 4.6 – Filme fino de TiO₂ depositado no substrato

A secagem com jato de ar quente foi testada, mas sem muito sucesso, pois o equipamento de secagem utiliza o ar do ambiente aquecido para ser lançado como jato de ar quente. Considerando as inúmeras impurezas existentes no ar, essas impurezas foram incididas diretamente nos filmes, o que consequentemente causou a contaminação dos mesmos. Diante do que foi exposto acima, foi escolhido realizar a secagem dos filmes através da chapa aquecedora.

O TiO₂, apesar de suas propriedades de tenacidade, leveza, resistência à corrosão, inércia química, toxidade nula, elevado ponto de fusão, brancura, alto índice de refração, alta capacidade de dispersão, e estabilidade química em uma ampla faixa de PH, possui uma baixa absorção de luz na faixa espectral acima de 400nm (faixa de maior irradiação solar na superfície da terra).

Para resolver esse problema, o filme de TiO_2 foi dopado com um corante orgânico que possui elevada absorção na faixa espectral solar, que é excitado pela incidência dos fótons de luz, ficando energicamente apto para transferir elétrons para a superfície condutora formada pelo óxido de titânio. Em seguida, estes elétrons são conduzidos para o contato elétrico desse filme, onde seu fluxo é coletado na forma de corrente elétrica.

O corante a ser usado deve ser solúvel no meio, sendo mantido disperso em uma solução homogênea com pouca tendência de aglomeração (FREITAS, 2006). Dentro desta categoria existe uma grande variedade de moléculas corantes para as diversas aplicações.

Foi utilizada a mistura de corantes para fins alimentícios cor verde folhas, da marca duas rodas. O corante alimentício pode ser definido como substância aditiva que confere, intensifica ou restaura a cor de um alimento. Existem três categorias de corantes permitidas pela legislação para uso em alimentos, os corantes naturais, o corante caramelo e os corantes artificiais.

4.4 Filme fino de TiO₂ com corante orgânico

O processo de deposição do filme fino de TiO_2 é uma adaptação da técnica spraypirólise, em que o espalhamento do filme é feito através de uma pipeta, e não através de um spray. Foram testadas duas formas de aplicação do corante no filme fino de TiO_2 , detalhado a seguir:

Material Utilizado:

- a) Dispersão de TiO₂ em HCl 0,1M;
- b) Mistura de corantes para fins alimentícios cor verde folhas, da marca duas rodas;
- c) Chapa de aquecimento;
- d) Pipeta plástica graduada de 10ml;
- Processo 1:

O primeiro processo testado (FREITAS, 2006) consiste na deposição do filme de TiO_2 utilizando alguma das formas mostradas na seção 4.3, e ao mesmo tempo preparar uma dispersão do corante em água destilada. Tendo o filme pronto e o corante dissolvido, faz-se imergir o filme no corante diluído, como mostra a Figura 4.7:

Figura 4.7 – Imersão do filme de TiO₂ no corante orgânico (FREITAS, 2006)

Esse processo é bastante simples, porém foi verificado que algumas vezes o filme ao ser molhado ficava danificado, pois partes do mesmo se soltavam. Devido a esse fator esse processo foi excluído.

 \blacktriangleright Processo 2:

O processo utilizado foi desenvolvido através de idéias obtidas no decorrer das deposições. Uma pequena quantidade de solução de TiO_2 com HCl foi colocada em um recipiente de plástico. Em seguida, adicionou-se o corante à solução com TiO_2 , formando assim uma solução que apresentou coloração verde devido á presença do corante.

Após essa etapa, é feita a deposição do filme através do espalhamento com a pipeta (Figura 5.13), como descrito na seção 4.3. Como resultado, o filme ficou com boa aderência e uniformidade macroscópica.

Figura 4.8 – TiO₂ com corante sendo depositado sobre o vidro

4.5 Filme Fino de CdS

O filme de sulfeto de cádmio foi obtido utilizando o procedimento relatado por CHAGAS, 1984 (banho químico, ou CBD), em que o substrato é imerso em uma solução, onde ocorre uma reação química que forma o filme sobre sua superfície.

Reagentes utilizados:

- a) EDTA $(C_{10}H_{18}N_2O_8) 0.86g/ml$
- b) Cloreto de Cádmio (CdCl₂) 0,1M
- c) Tiuréia $(NH_2CSNH_2) 0,1M$
- d) Amônia $(NH_3) 0.771 \text{g/ml}$
- e) Água destilada QSP 100ml

Para a preparação de 80ml de solução, os reagentes foram medidos de acordo com a Tabela 4.1, utilizando uma balança analítica com precisão de 10⁻⁵g para medir a massa dos reagentes sólidos, e uma pipeta com precisão de 10⁻¹ml para medir o volume dos reagentes líquidos:

Reagente	Massa ou Volume
Cloreto de Cádmio	1,833g
Tiuréia	2,665g
EDTA	0,3ml
Amônia	5,5ml

Tabela 4.1 – Relação dos Reagentes utilizados para a preparação da solução para a formação do CdS.

Em um béquer, foi dissolvido o $CdCl_2$ em 10ml de água deionizada, enquanto em outro béquer foi dissolvido a tiuréia em 20ml de água deionizada. Em seguida, adicionou-se o EDTA à dispersão de $CdCl_2$, enquanto simultaneamente foi adicionada a amônia à tiuréia dissolvida.

Por último, foram misturadas as duas soluções em um béquer de 100ml. As soluções que individualmente eram transparentes, ao serem unidas formarão uma solução branca, à qual foi adicionada água deionizada até completar a marca de 80ml. Na etapa seguinte, foram mergulhadas as lâminas de vidro, previamente limpas. A última etapa da reação química que dentre os resultados tem a formação do CdS, pode ser vista na Reação 4.1, que mostra também a formação de amônia, uréia.

$$[Cd(NH_3)_4]^{+2} + (NH_2)_2CS + OH^- \to CdS + 4NH_3 + (NH_2)_2CO + H_2O$$
(4.1)

A deposição ocorreu nos dois lados do substrato, o que não é conveniente para a aplicação solar, pois só é utilizado um dos lados. Assim, foi colocada uma fita adesiva em um dos lados, que foi removida após o processo de deposição. O filme depositado fica como mostrado na figura 4.9:

Figura 4.9 - Filme fino de Sulfeto de Cádmio depositado no substrato de vidro

4.6 Preparação da célula solar fotovoltaica

A célula solar construída seguiu o esquema mostrado na Figura 4.2, de acordo com o seguinte processo: Depositaram-se os filmes de TiO_2 com corante e de CdS como descritos nas seções 4.4 e 4.5 respectivamente, Em seguida foi pintada uma parte da superfície de filme depositado com o contato elétrico, que consiste em uma tinta com Ag, deixando-a como nas figuras 4.10 e 4.11:

Figura 4.10 - Filme de CdS com o contato elétrico

Figura 4.11 – TiO₂ com corante e o contato elétrico

A forma no qual os dois filmes foram pintados foi escolhida propositalmente, depois de várias experiências que mostravam que a posição dos contatos não deveria coincidir, pois senão haveria um curto-circuito na célula e a mesma não funcionaria. Para otimizar a captura de elétrons no filme de TiO_2 , foi feita uma segunda camada do mesmo, pois assim o contato elétrico ficaria no meio do filme (veja a figura 4.12), e diminuiria a possibilidade de entrar em contato com o condutor do filme de CdS causando curto-circuito.

Figura 4.12- Segunda camada de TiO2 sendo depositada

Dessa forma, o filme de TiO_2 ficou de acordo com a Figura 4.13, com seus contatos protegidos do filme de CdS quando a célula foi montada.

Figura 4.13 – Filme de TiO₂ com o condutor elétrico entre duas camadas

Os dois filmes foram colocados em contato e selados com uma fita adesiva transparente, para não diminuir a quantidade de luz a ser absorvida por ambos. As partes circulares do contato elétrico serviram para ser soldadas à um fio, dessa forma a célula ficou como mostrado na figura 4.14.

Figura 4.14 – Célula solar

4.7 Características elétricas da célula solar fotovoltaica

Para a realização dos testes elétricos, foi necessário a montagem do sistema de iluminação mostrado na seção 4.2. A luz utilizada tinha potência total de 60W, sendo especificado pelo fabricante que seu rendimento luminoso é de 5%, gerando assim uma potência real luminosa de 3W. O cilindro no qual a luz foi contida possuía área interna total de 559,3125cm², desta forma, a irradiação na parte interna do cilindro foi de 5,3637mW/cm². O Multímetro digital utilizado era da marca PC link, modelo VA18B com precisão para DDP de 10⁻⁵V e para corrente elétrica de 10⁻⁷A. Sem a incidência luminosa, a célula gerou uma DDP de 45,4mV e corrente elétrica abaixo da escala mínima do multímetro.

A resistividade elétrica média dos contatos elétricos de prata foi de $160\Omega m$, que é um valor alto para um contato elétrico, uma vez que atualmente em laboratório são produzidos para esses fins filmes condutores transparentes com resistividade elétrica da ordem de $10^{-2}\Omega m$ (ROMEO, N. 2004). O elevado valor da resistividade da tinta prata pode ser atribuído ao fato de nessa tinta, a prata ser dissolvida em um solvente orgânico que não possui características condutoras. A maior parte desse solvente é evaporado, quando a tinta seca, porém ainda ficam vestígios de sua presença.

Para determinar a potência gerada pela célula solar com incidência luminosa, foi montado um circuito onde toda potência gerada pela célula foi consumida por um resistor elétrico. O esquema do circuito é mostrado na figura 4.15.

Figura 4.15 – Esquema do circuito montado com a célula fotovoltaica e um resistor

4.8 Equipamentos utilizados na realização das medidas

Os equipamentos utilizados nas medidas e realização de testes foram enumerados a seguir:

- 1. Chapa aquecedora com temperaturas de 0°C à 300°C
- 2. Balança analítica da marca Bioprecisa modelo FA2104N com precisão de 10^{-5} g
- 3. Pipeta plástica com precisão de 10^{-1} ml
- 4. Microscópio eletrônico de varredura Philips, modelo XL30
- Detector de Energia Dispersiva de raios-X(EDX), modelo EDAX-CDU Leap Detector, operando com tensão de aceleração igual a 20kV
- 6. Multímetro digital da marca PC link, modelo VA18B com precisão para DDP de 10^{-5} V e para corrente elétrica de 10^{-7} A

5 RESULTADOS E DISCUSSÕES

5.1 Microscopia Eletrônica de Varredura do filme de CdS

A morfologia dos filmes pode ser observadas através de micrografias capturadas pelo microscópio eletrônico. A fixação dos substratos dos filmes no porta-amostra foi feita com tinta prata condutora. As figuras 5.1 e 5.2 são micrografias do filme de CdS realizadas com resolução de aumento de 5000x, cobrindo uma área de 29,97µm x 29,97µm. Percebe-se que a amostra apresenta uma superfície de esferas não compactadas compostas por lâminas finas (ASSUMPÇÃO 1994).

Figura 5.1 - Filme de CdS com 20hs de deposição ampliado 5000x

Figura 5.2 - Filme de CdS com 26hs de deposição ampliado 5000x

A amostra da Figura 5.1 foi depositada durante o período de 20 horas, enquanto a da Figura 5.2, levou 26 horas para sua deposição. As próximas micrografias (Figuras 5.3 e 5.4) são ampliações de 10000x e 25000x, respectivamente, do filme de CdS depositado durante 20hs e cobrem áreas de 196,5604 μ m² e 35,5216 μ m², respectivamente, permitindo que seja vista mais detalhadamente as partes dessa estrutura morfológica.

Figura 5.3 - Filme de CdS com 20hs de deposição ampliado 10000x

Figura 5.4 - Filme de CdS 20hs de deposição ampliado 25000x

A estrutura morfológica do CdS depositado de acordo com a técnica de banho químico realizado neste trabalho, mostrou-se semelhante à morfologia encontrada na literatura (GONÇALVES, 2005). Caracteristicamente, o CdS se forma na superfície do substrato em morfologia de esferas não compactadas compostas por lâminas finas (ASSUMPÇÃO, 1994).

Figura 5.5 – MEV de um filme fino de CdS (GONÇALVES, 2005)

5.2 Microscopia Eletrônica de Varredura dos Filmes de TiO₂

As figuras 5.6 à 5.9 a seguir são micrografias da amostra de TiO_2 em diferentes ampliações:

Figura 5.7 – Filme de TiO₂ ampliado 10000x

Figura 5.8 – Filme de TiO2 ampliado 25000x

Figura 5.9 – Filme de TiO2 ampliado 35000x

Diferentemente da morfologia encontrada no filme de CdS, os filmes de TiO_2 constituem-se basicamente por nanopartículas de TiO_2 com tamanho médio de 200nm, com algumas regiões bem sinterizadas o outras menos sinterizadas. Estas irregularidades podem desfavorecer a transferência de carga pelos portadores, pois poderão se formar entre a junção p-n "bolhas" de ar, que dificultam a passagem dos elétrons e favorece a criação de caminhos alternativos nos chamados contornos de grãos. A estrutura morfológica do filme fino de TiO_2

encontrada neste trabalho, é semelhante à outras já encontradas (JOSHI, 2009), como mostra a figura 5.10.

Figura 5.10 – Filme fino de TiO₂ com uma camada de C (a) e somente TiO₂ (b) (JOSHI, 2009)

Pode-se ver através da Figura 5.5 que o filme ficou regularmente uniforme, apresentando deformidades menores que 1µm, que podem possivelmente serem reduzidas no momento que o filme é colocado sob pressão com o filme de CdS, na confecção da célula solar fotovoltaica.

5.3 Espectroscopia de Energia Dispersiva de Raio-X (EDX)

O EDX é uma técnica que verifica a superfície do filme com objetivo de identificar os elementos que constituem o mesmo. Desta forma, pode-se verificar também as impurezas presentes, uma vez que todos os tipos de átomos em quantidades detectáveis aparecem no resultado.

5.3.1 Filme de CdS

De acordo com a Figura 5.11, é possível notar a presença de cádmio (marcado com picos verdes) e enxofre (marcado com picos violetas), além de algumas impurezas em menor quantidade. O pico maior verificado na amostra é do silício que compõe o substrato, que devido à pequena espessura do filme pôde ser detectado.

Figura 5.11 –EDX do filme fino de CdS

Como a reação de formação de CdS foi feita com banho químico na presença da tiuréia, que é um composto à base de nitrogênio e enxofre, possivelmente reações secundárias (ver Reação 4.1) desenvolvidas no banho químico possam ter gerado impurezas. Além disso, existem possibilidades de particulados constituintes da atmosfera do laboratório combinarem com o banho, porém as impurezas não são predominantes nos resultados obtidos, pois estão em pequena quantidade.

5.3.2 Filme de TiO₂

Como pode ser confirmado pela figura 5.12, o filme de TiO_2 apresentou basicamente apenas picos de Titânio e Oxigênio, com uma pequena detecção de silício causada pelo substrato. Devido ao fato do filme de TiO_2 ser mais espesso que o de CdS, a quantidade de Si detectada foi bem menor.

Figura 5.12 –EDX do filme fino de TiO₂

Nos apêndices 1 e 2 estão os dados numéricos filtrados gerados pelo software do equipamento durante a realização das medidas, que podem ser usados em uma análise mais detalhada, em algum caso que seja necessário conhecer dados específicos de alguma banda de energia.

5.4 Espessura dos Filmes

A espessura dos filmes foram medidas de forma indireta, através da densidade dos materiais, a massa dos filmes depositados e a área depositada. Primeiro foi encontrado o volume dos filmes através da relação:

$$V = Ae \tag{5.1}$$

Na qual, $V \notin o$ volume do filme, $A \notin a$ área depositada e e h a espessura do filme

A área depositada de todos os filmes foi propositalmente de mesmo valor, para otimizar o desempenho da célula e simplificar os cálculos que envolvessem essa grandeza. O valor das áreas que foi encontrado com auxílio de um paquímetro foi de 9,5cm².

A massa média dos filmes foi medida através da diferença entre a massa de um substrato com filme depositado e um substrato de mesmas dimensões devidamente limpo. A massa média dos filmes de TiO₂ foi de 0,1046g, enquanto a do CdS foi de 0,0847g.

A densidade do TiO₂ puro é de 4,23g/cm³, encontrada no próprio reagente, enquanto a do CdS é de 4,82 g/cm³ (WIBERG, HOLLEMAN 2001). As espessuras médias encontradas foram de 26,03µm para os filmes de TiO₂, e 18,49µm para os de CdS.

5.5 Testes Elétricos na Célula Fotovoltaica

Uma breve revisão sobre energia solar está apresentada no anexo A. O objetivo deste trabalho em relação aos testes práticos do protótipo de célula solar confeccionado, foi obter dados elétricos em laboratório e comprovar a funcionalidade dos filmes finos depositados em aplicações fotovoltaicas.

O resistor utilizado possuía resistência elétrica de 100,0 Ω . A DDP medida foi de 140mV, e a corrente elétrica 1,80 μ A, o que dá uma potência de 252nW. A corrente elétrica medida com a célula sem incidência luminosa ficou abaixo da escala, enquanto sua DDP foi de 45,4mV, o que significa que os filmes realmente foram sensibilizados na presença de luz, gerando assim uma potência elétrica o que mostra a funcionalidade dos filmes em aplicações fotovoltaicas, o que era o objetivo da construção desse protótipo de célula solar fotovoltaica.

O filme condutor utilizado funcionou como um resistência interna no gerador (célula solar fotovoltaica). Devido ao elevado valor de sua resistividade, a maior parte da potência elétrica gerada pela célula solar foi consumida na geração de calor do filme condutor, o que reduziu consideravelmente o valor da DDP medida nos terminais da célula, e consequentemente, a potência elétrica gerada.

6 CONCLUSÃO

Este trabalho atingiu seu objetivo que foi a deposição e caracterização de filmes finos semicondutores de dióxido de titânio e sulfeto de cádmio, necessários para a construção de uma célula solar fotovoltaica. A funcionalidade dos filmes para aplicações em células solares fotovoltaicas foi comprovada através de medidas elétricas feitas em um protótipo de célula solar fotovoltaica construída a partir dos filmes depositados.

Os filmes foram originalmente projetados para serem depositados de acordo com procedimentos já conhecidos (FREITAS, 2006) e (CHAGAS, 1984), mas com o intuito de melhorar a uniformidade e pureza das amostras, e a facilidade do processo de deposição, foram feitas modificações nessas técnicas.

Os filmes de TiO_2 apresentaram uma boa uniformidade microscópica, com irregularidades da ordem de 1µm, e elevado grau de pureza, que foram mostrados através de micrografias tiradas no microscópio eletrônico de varredura, e elevado grau de pureza, que pôde ser constatado através de dados coletados com o detector de Energia Dispersiva de raios-X (EDX).

Os filmes de CdS também atingiram uma morfologia que apresenta uma boa regularidade na superfície, porém apresentaram uma pequena quantidade de impurezas baseadas em C, N, H e O, resultantes da reação de formação do CdS.

Para a construção do protótipo de célula solar fotovoltaica é necessário o uso de um filme condutor transparente, que faz os contatos elétricos. O ideal é que esse condutor seja um filme fino transparente de um material com resistência elétrica abaixo de $10\Omega/m^2$, que é a resistência registrada para os filmes finos de SnO₂ (ROMEO, N. 2004).

Foram utilizados como contatos elétricos, uma pintura de tinta prata condutora, colocada diretamente nos filmes semicondutores. O uso desse material reduziu o rendimento da célula por não ser um material transparente, o que conseqüentemente fez com que a camada condutora não ocupasse toda a área depositada dos filmes, uma vez que impede a passagem da radiação luminosa e por possuir uma resistividade elevada para esse fim.

O protótipo de célula solar fotovoltaica foi construído com a utilização dos filmes finos de CdS e TiO₂ dopado com corante orgânico depositados pelos processos desenvolvidos através de testes experimentais. Os testes elétricos realizados no protótipo comprovaram a geração de uma DDP e corrente elétrica, o que demonstra a funcionalidade dos filmes depositados em células solares fotovoltaicas. ANEXO A – Fundamentos de Engenharia Solar

O sol é uma esfera de gases intensamente quentes com temperatura de corpo negro efetivo de 5760K, e tem diâmetro de aproximadamente $1,39x10^9$ m(KALOGIROU, S. 2009). Ele está a uma distância em torno de $1,5x10^8$ km da terra, considerando a velocidade da luz igual a 300000 km/s, a radiação solar leva em torno de 8min e 20 para chegar à superfície de nosso planeta. Na figura A1 pode-se visualizar um esquema representativo com essas informações:

Figura A.1 - Algumas características Sol-Terra (KALOGIROU, S. 2009 Modificado)

O sol é na verdade, uma fusão contínua de hidrogênio em hélio. A energia total liberada é de $3,8x10^{20}$ MW, que equivale a $63MW/m^2$, do qual a terra recebe "apenas" $1,7x10^{14}$ KW(KALOGIROU, S. 2009). Está estimado que 84min da radiação solar incidente na Terra é o suficiente para suprir a demanda mundial de energia por um ano.

Nos cálculos referentes à energia solar, o tempo solar aparente (TSA), que é baseado no movimento angular em torno do céu, pode ser usado para expressar a tempo local padrão (TLP). Para converter o TLP para o TSA são necessárias duas correções: a equação do tempo e a correção de longitude.

Equação do tempo

Devido a fatores associados à órbita da Terra ao redor do Sol, a Velocidade orbital média da Terra varia ao longo do ano, assim como o TSA varia ligeiramente em relação ao tempo médio mantido por um relógio rodando a uma taxa uniforme. Essa variação é chamada equação do tempo (ET).

A equação do tempo surge porque a duração de um dia, isto é, o tempo necessário para a Terra completar uma revolução sobre seu próprio eixo em relação ao sol, não é uniforme em todo o ano. Ao longo dos anos, a duração média de um dia é de 24 h, no entanto, o comprimento do dia varia devido à excentricidade da órbita da Terra e da inclinação da Terra com o eixo do plano normal de sua órbita.

Devido à elipticidade da órbita, a Terra está mais perto do sol em 03 janeiro e mais distante do sol, 04 julho. Os valores da equação do tempo em função dos dias do ano (N), podem ser obtidos aproximadamente partir das seguintes equações:

$$ET = 9.87 sen(2B) - 7.53 \cos(B) - 1.5 sen(B)$$
(1.1)

Na qual,
$$B = (N-1)\frac{360}{364}$$
 (1.2)

Correção de Longitude

O TLP (Tempo Local Padrão) é contado a partir de um meridiano selecionado perto do centro de um fuso horário ou a partir do meridiano padrão, o Greenwich, que é a longitude de 0°. O sol leva 4 minutos para atravessar 1° de longitude, o termo de correção de longitude 4°(longitude padrão - longitude local) deve ser adicionado ou subtraído ao TLP.

Esta correção é constante para uma longitude particular, e a seguinte regra deve ser seguida com respeito ao sinal de convenções. Se o local está a leste do meridiano padrão, a correção é adicionada ao tempo do relógio. Se a localização é a oeste, é subtraída. A equação geral para calcular o tempo solar aparente (TSA) é:

$$TSA = TLP + ET \pm 4(LP - LL) \tag{1.3}$$

TLP = Tempo local padrão

ET = Equação do tempo

LP = Longitude padrão

LL = Longitude local

Ângulos importantes para o estudo da energia solar

Figura A.2 – Definição de latitude, ângulo horário e declinação solar (KALOGIROU, S. 2009)

Declinação solar $\,\delta\,$

Como pode ser visto na figura A.3, a declinação solar é a distância angular entre os raios de sol e o norte ou sul do equador, a declinação norte é designada como positiva. A figura 1.4 mostra a variação da declinação nos equinócios e solstícios. Como pode ser visto, a declinação varia de 0° no equinócio da primavera para +23,45 ° no solstício de verão, 0° no equinócio de outono, e -23,45 ° no solstício de inverno.

Figura A.3 - Variação anual da declinação solar. (KALOGIROU, S. 2009)

A variação da declinação solar no decorrer do ano é mostrada na figura A.4 e pode ser calculada de forma aproximada em graus pela equação (ASHRAE, 2007):

$$\delta = 23.45 \left[\frac{360}{365} (284 + N) \right] \tag{1.4}$$

Figura A.4 – Gráfico da declinação solar em função do número do dia. (KALOGIROU, S. 2009)

A declinação pode também ser encontrada em radianos, pela equação de Spencer (SPENCER, 1971):

$$\delta = 0.006918 - 0.399912 \cos(\Gamma) + 0.070257 \sin(\Gamma) + -0.006758 \cos(2\Gamma) + 0.000907 \sin(2\Gamma) + -0.002697 \cos(3\Gamma) + 0.00148 \sin(3\Gamma)$$
(1.5)

$$\Gamma = 2\pi \frac{(N-1)}{365} \tag{1.6}$$

A declinação pode ser considerada constante durante todo um dia (KREITH ANDKREIDER, 1978; DUFIE AND BECKMAN, 1991)

Ângulo da altitude solar α

O ângulo de altitude solar é o ângulo entre os raios solares e o plano horizontal, mostrado na Figura A.5. Ele está relacionado com o ângulo do zênite solar, Φ , que é o ângulo entre os raios de sol e a vertical. Desta forma,

$$\Phi + \alpha = \frac{\pi}{2} = 90^{\circ} \tag{1.7}$$

A expressão matemática para o ângulo de altitude solar é:

$$\arcsin\left[\sin(L)\sin(\delta) + \cos(L)\cos(\delta)\cos(h)\right]$$
(1.8)

Na qual L é a latitude local, que é definida como o ângulo entre o centro da terra, o local analisado e o equador. Valores ao norte do equador são considerados positivos e ao sul são negativos.

Figura A.5 – Representação dos ângulos α , Φ e Z (KALOGIROU, S. 2009)

Ângulo azimutal solar z

O ângulo azimutal é medido entre a projeção dos raios solares no plano horizontal e o sul geográfico. A expressão matemática para o ângulo azimutal é:

$$z = \sin^{-1} \left(\frac{\cos(\delta) \sin(h)}{\cos(\alpha)} \right)$$
(1.9)

Esta equação está correta, desde que (ASHRAE, 1975) $\cos(h) > tg(\delta)/tg(L)$. Se não, isso significa que o sol está atrás da linha Leste-Oeste, e o ângulo azimutal para a hora da manhã é $-\pi + |z|$, e para o horário da tarde é $\pi - z$. No meio-dia solar, por definição, o sol está exatamente sobre o meridiano, que contém a linha norte-sul e, conseqüentemente, o ângulo azimutal solar é de 0°.

O ângulo de incidência, θ

O ângulo de incidência solar, θ , é o ângulo entre os raios de sol e a normal à superfície. Para um plano horizontal, o ângulo de incidência, θ , e o ângulo zenital, Φ , são o mesmo. Estes ângulos, mostrados na Figura A.6, estão relacionados com os ângulos básicos,

mostrados na Figura A.3. A equação (1.10) é a expressão geral para o ângulo de incidência (KREITH ANDKREIDER, 1978; DUFIE AND BECKMAN, 1991):

$$\cos(\theta) = \sin(L)\sin(\delta)\cos(\beta) - \cos(L)\sin(\delta)\sin(\beta)\cos(Z_s) + +\cos(L)\cos(\delta)\cos(h)\cos(\beta) + \sin(L)\cos(\delta)\cos(h)\sin(\beta)\cos(Z_s) + +\cos(\delta)\sin(h)\sin(\beta)\sin(Z_s)$$
(1.10)

Na qual β é o ângulo entre a superfície e o plano horizontal, Z_s é o ângulo azimutal da superfície, ou seja, o ângulo entre a normal da superfície e o sul.

Figura A.6 - Ângulos relacionados com a superfície escolhida. (KALOGIROU, S. 2009)

A equação (1.10) é visivelmente complicada para ser trabalhada de forma manual, sendo mais adequado tratá-la com programação, o que torna tudo mais simples. Existem casos específicos que simplificam bastante esta equação. Estes casos estão listados:

• **Superfícies horizontais:** $\beta = 0^{\circ}$, logo:

 $\cos(\theta) = \sin(L)\sin(\delta) + \cos(L)\cos(\delta)\cos(h)$, o que pela equação 1.8, sabendo que $\sin(\alpha) = \cos(\Phi)$, conclui-se que $\theta = \Phi$.

• Superfícies verticais: $\beta = 90^\circ$, logo a equação 1.10 se torna:

$$\cos(\theta) = -\cos(L)\sin(\delta)\cos(Z_s) + \sin(L)\cos(\delta)\cos(h)\cos(Z_s) + \\ +\cos(\delta)\sin(h)\sin(\beta)\sin(Z_s)$$
(1.11)

• A face virada para o sul, no hemisfério norte: $Z_s = 0^{\circ}$, assim a equação 1.10 se reduz à:

$$\cos(\theta) = \sin(L)\sin(\delta)\cos(\beta) - \cos(L)\sin(\delta)\sin(\beta) + +\cos(L)\cos(\delta)\cos(h)\cos(\beta) + \sin(L)\cos(\delta)\cos(h)\sin(\beta)$$
(1.12)

Pode ser reduzida para:

$$\cos(\theta) = \sin(L - \beta)\sin(\delta) + \cos(L - \beta)\cos(\delta)\cos(h)$$
(1.13)

• A face virada para o norte, no hemisfério sul: $Z_s = 180^\circ$, a equação 1.10 se transforma em:

$$\cos(\theta) = \sin(L+\beta)\sin(\delta) + \cos(L+\beta)\cos(\delta)\cos(h)$$
(1.14)

Diagramas do Caminho Solar

Para fins práticos, pode ser mais útil ter o desenho do caminho descrito pelo sol, do que fazer exaustivos cálculos. Estes desenhos ou gráficos são denominados diagramas do caminho solar, e podem ser utilizados para encontrar a posição do sol em qualquer época do ano. São confeccionadas curvas de declinação constante em um sistema cartesiano (ângulo de altitude solar)x(ângulo azimutal solar), com ainda pontos que correspondem às horas em que o sol é visível. Pode-se ver um exemplo desses diagramas na figura A.7, onde temos o diagrama correspondente á latitude de 35° com curvas de declinação variando no intervalo de -23,45° à +25,45° em intervalos de 5° em 5°.

Figura A.7 – Diagrama do caminho solar para a latitude 35°N (KREITH ANDKREIDER, 1978; DUFIE AND BECKMAN, 1991)

APÊNDICE A – EDX do filme fino de CdS

Bruker AXS Microanalysis GmbH Berlin, Germany Esprit 1.8

Date: 3/9/2009 15:45:37 Real time: 74546 Life time: 72352 Pulse density: 0

Primary energy: 30 Take off angle: 45 Tilt angle: 0 Azimut angle: 0

Detector type: Custom type Window type: slew AP3.3 Detector thickness: 0.45 Si dead layer:0.08

Calibration, lin.: 10.001 Calibration, abs.: -955.696 Mn FWHM: 126.276 Fano factor: 0.107 Channels: 4096

Energy	Counts	Energy	Counts	Energy	Counts	Energy	Counts	Energy	Counts
-0.0856	1	3.2347	601	6.5551	48	9.8754	27	13.1957	7
-0.0756	1	3.2447	687	6.5651	54	9.8854	40	13.2057	14
-0.0656	7	3.2547	838	6.5751	53	9.8954	25	13.2157	11
-0.0556	40	3.2647	1053	6.5851	54	9.9054	23	13.2257	9
-0.0456	232	3.2747	1281	6.5951	49	9.9154	43	13.2357	8
-0.0356	930	3.2847	1395	6.6051	47	9.9254	25	13.2457	11
-0.0256	2706	3.2947	1637	6.6151	53	9.9354	27	13.2557	17
-0.0156	5832	3.3047	1740	6.6251	53	9.9454	30	13.2657	14
-0.0056	9494	3.3147	1838	6.6351	45	9.9554	27	13.2757	10
0.0044	10807	3.3247	1685	6.6451	60	9.9654	31	13.2857	13
0.0144	9471	3.3347	1566	6.6551	50	9.9754	16	13.2957	11
0.0244	6002	3.3447	1387	6.6651	50	9.9854	28	13.3057	11
0.0344	2797	3.3547	1218	6.6751	47	9.9954	32	13.3157	12
0.0444	944	3.3647	1099	6.6851	56	10.0054	32	13.3257	15
0.0544	225	3.3747	904	6.6951	57	10.0154	26	13.3357	10
0.0644	71	3.3847	786	6.7051	65	10.0254	28	13.3457	16
0.0744	17	3.3947	662	6.7151	59	10.0354	25	13.3557	14
0.0844	0	3.4047	527	6.7251	60	10.0454	21	13.3657	7
0.0944	0	3.4147	490	6.7351	46	10.0554	38	13.3757	14
0.1044	0	3.4247	442	6.7451	69	10.0654	27	13.3857	15
0.1144	0	3.4347	372	6.7551	48	10.0754	28	13.3957	12
0.1244	0	3.4447	380	6.7651	45	10.0854	23	13.4057	12
0.1344	0	3.4547	379	6.7751	42	10.0954	30	13.4157	11

0.1444	0	3.4647	373	6.7851	60	10.1054	36	13.4257	16
0.1544	0	3.4747	390	6.7951	53	10.1154	32	13.4357	20
0.1644	0	3.4847	439	6.8051	62	10.1254	27	13.4457	15
0.1744	0	3.4947	495	6.8151	55	10.1354	26	13.4557	13
0.1844	0	3.5048	477	6.8251	52	10.1454	24	13.4657	10
0.1944	0	3.5148	511	6.8351	52	10.1554	31	13.4757	8
0.2044	0	3.5248	521	6.8451	58	10.1654	38	13.4857	7
0.2144	39	3.5348	474	6.8551	51	10.1754	34	13.4957	13
0.2244	234	3.5448	469	6.8651	55	10.1854	27	13.5058	13
0.2344	354	3.5548	407	6.8751	55	10.1954	41	13.5158	13
0.2444	461	3.5648	397	6.8851	45	10.2054	30	13.5258	13
0.2544	590	3.5748	330	6.8951	52	10.2154	27	13.5358	11
0.2644	770	3.5848	316	6.9051	57	10.2254	22	13.5458	15
0.2744	865	3.5948	342	6.9151	52	10.2354	22	13.5558	7
0.2844	912	3.6048	373	6.9251	55	10.2454	30	13.5658	10
0.2944	839	3.6148	398	6.9351	49	10.2554	29	13.5758	18
0.3044	723	3.6248	485	6.9451	64	10.2654	27	13.5858	16
0.3144	581	3.6348	624	6.9551	52	10.2754	26	13.5958	8
0.3244	498	3.6448	684	6.9651	53	10.2854	31	13.6058	9
0.3344	466	3.6548	808	6.9751	40	10.2954	23	13.6158	10
0.3444	426	3.6648	922	6.9851	52	10.3054	30	13.6258	14
0.3544	479	3.6748	938	6.9951	45	10.3154	33	13.6358	10
0.3644	573	3.6848	974	7.0051	61	10.3254	22	13.6458	15
0.3744	609	3.6948	925	7.0151	49	10.3354	23	13.6558	12
0.3844	667	3.7048	846	7.0251	52	10.3454	25	13.6658	14
0.3944	684	3.7148	723	7.0351	58	10.3554	21	13.6758	15
0.4044	615	3.7248	669	7.0451	63	10.3654	19	13.6858	20
0.4144	498	3.7348	517	7.0551	54	10.3754	32	13.6958	4
0.4244	337	3.7448	394	7.0651	37	10.3854	40	13.7058	7
0.4344	192	3.7548	349	7.0751	44	10.3954	33	13.7158	15
0.4444	117	3.7648	258	7.0851	37	10.4054	29	13.7258	10
0.4544	89	3.7748	203	7.0951	51	10.4154	26	13.7358	17
0.4644	49	3.7848	156	7.1051	35	10.4254	25	13.7458	14
0.4744	59	3.7948	161	7.1151	48	10.4354	16	13.7558	15
0.4844	129	3.8048	120	7.1251	50	10.4454	22	13.7658	16
0.4944	201	3.8148	128	7.1351	59	10.4554	26	13.7758	7
0.5045	337	3.8248	101	7.1451	52	10.4654	34	13.7858	21
0.5145	380	3.8348	89	7.1551	49	10.4754	24	13.7958	18
0.5245	467	3.8448	82	7.1651	59	10.4854	25	13.8058	12
0.5345	376	3.8548	126	7.1751	47	10.4954	23	13.8158	12
0.5445	323	3.8648	113	7.1851	48	10.5055	22	13.8258	10
0.5545	194	3.8748	133	7.1951	58	10.5155	31	13.8358	11
0.5645	140	3.8848	141	7.2051	43	10.5255	25	13.8458	16
0.5745	56	3.8948	118	7.2151	51	10.5355	24	13.8558	12
0.5845	81	3.9048	156	7.2251	43	10.5455	14	13.8658	6
0.5945	79	3.9148	144	7.2351	49	10.5555	27	13.8758	14
0.6045	50	3.9248	169	7.2451	54	10.5655	27	13.8858	11
0.6145	77	3.9348	160	7.2551	45	10.5755	26	13.8958	17
0.6245	59	3.9448	193	7.2651	50	10.5855	26	13.9058	20

0.6345	92	3.9548	180	7.2751	40	10.5955	22	13.9158	9
0.6445	76	3.9648	181	7.2851	38	10.6055	30	13.9258	12
0.6545	67	3.9748	230	7.2951	56	10.6155	20	13.9358	7
0.6645	47	3.9848	204	7.3051	47	10.6255	23	13.9458	6
0.6745	66	3.9948	207	7.3151	44	10.6355	19	13.9558	14
0.6845	37	4.0048	226	7.3251	49	10.6455	17	13.9658	7
0.6945	71	4.0148	202	7.3351	46	10.6555	23	13.9758	11
0.7045	52	4.0248	187	7.3451	44	10.6655	20	13.9858	6
0.7145	56	4.0348	135	7.3551	44	10.6755	23	13.9958	12
0.7245	60	4.0448	138	7.3651	49	10.6855	23	14.0058	13
0.7345	53	4.0548	136	7.3751	59	10.6955	28	14.0158	14
0.7445	54	4.0648	135	7.3851	59	10.7055	21	14.0258	15
0.7545	43	4.0748	121	7.3951	50	10.7155	10	14.0358	13
0.7645	45	4.0848	105	7.4051	43	10.7255	31	14.0458	10
0.7745	56	4.0948	104	7.4151	44	10.7355	21	14.0558	8
0.7845	51	4.1048	88	7.4251	42	10.7455	26	14.0658	7
0.7945	61	4.1148	90	7.4351	41	10.7555	17	14.0758	15
0.8045	49	4.1248	93	7.4451	55	10.7655	31	14.0858	7
0.8145	87	4.1348	99	7.4551	47	10.7755	30	14.0958	7
0.8245	72	4.1448	104	7.4651	47	10.7855	25	14.1058	7
0.8345	63	4.1548	69	7.4751	46	10.7955	23	14.1158	12
0.8445	76	4.1648	78	7.4851	48	10.8055	32	14.1258	10
0.8545	94	4.1748	100	7.4951	58	10.8155	32	14.1358	12
0.8645	91	4.1848	94	7.5052	46	10.8255	20	14.1458	12
0.8745	90	4.1948	88	7.5152	31	10.8355	27	14.1558	13
0.8845	77	4.2048	82	7.5252	65	10.8455	28	14.1658	11
0.8945	86	4.2148	80	7.5352	42	10.8555	31	14.1758	13
0.9045	76	4.2248	82	7.5452	61	10.8655	29	14.1858	12
0.9145	95	4.2348	87	7.5552	53	10.8755	32	14.1958	8
0.9245	98	4.2448	82	7.5652	60	10.8855	27	14.2058	12
0.9345	87	4.2548	78	7.5752	47	10.8955	22	14.2158	16
0.9445	79	4.2648	85	7.5852	48	10.9055	14	14.2258	13
0.9545	95	4.2748	94	7.5952	44	10.9155	26	14.2358	11
0.9645	137	4.2848	75	7.6052	43	10.9255	21	14.2458	15
0.9745	111	4.2948	81	7.6152	45	10.9355	28	14.2558	12
0.9845	152	4.3048	81	7.6252	44	10.9455	21	14.2658	8
0.9945	202	4.3148	89	7.6352	42	10.9555	21	14.2758	12
1.0045	289	4.3248	88	7.6452	42	10.9655	21	14.2858	9
1.0145	414	4.3348	75	7.6552	63	10.9755	17	14.2958	11
1.0245	464	4.3448	90	7.6652	45	10.9855	28	14.3058	15
1.0345	590	4.3548	95	7.6752	45	10.9955	31	14.3158	11
1.0445	591	4.3648	90	7.6852	47	11.0055	23	14.3258	7
1.0545	591	4.3748	104	7.6952	36	11.0155	32	14.3358	9
1.0645	501	4.3848	85	7.7052	36	11.0255	29	14.3458	14
1.0745	367	4.3948	86	7.7152	38	11.0355	21	14.3558	8
1.0845	281	4.4048	97	7.7252	41	11.0455	29	14.3658	4
1.0945	254	4.4148	93	7.7352	42	11.0555	22	14.3758	17
1.1045	170	4.4248	82	7.7452	39	11.0655	19	14.3858	11
1.1145	153	4.4348	99	7.7552	38	11.0755	22	14.3958	14

1.1245	147	4.4448	74	7.7652	45	11.0855	18	14.4058	8
1.1345	127	4.4548	89	7.7752	59	11.0955	27	14.4158	10
1.1445	166	4.4648	98	7.7852	53	11.1055	22	14.4258	14
1.1545	154	4.4748	101	7.7952	42	11.1155	15	14.4358	16
1.1645	125	4.4848	104	7.8052	32	11.1255	15	14.4458	10
1.1745	128	4.4948	85	7.8152	39	11.1355	15	14.4558	12
1.1845	148	4.5049	81	7.8252	47	11.1455	23	14.4658	9
1.1945	165	4.5149	99	7.8352	48	11.1555	23	14.4758	11
1.2045	230	4.5249	86	7.8452	44	11.1655	27	14.4858	17
1.2145	198	4.5349	78	7.8552	41	11.1755	18	14.4958	10
1.2245	303	4.5449	92	7.8652	40	11.1855	12	14.5059	11
1.2345	374	4.5549	88	7.8752	41	11.1955	21	14.5159	9
1.2445	387	4.5649	81	7.8852	42	11.2055	18	14.5259	9
1.2545	431	4.5749	76	7.8952	43	11.2155	26	14.5359	6
1.2645	411	4.5849	90	7.9052	38	11.2255	18	14.5459	13
1.2745	363	4.5949	69	7.9152	33	11.2355	17	14.5559	12
1.2845	303	4.6049	79	7.9252	36	11.2455	20	14.5659	11
1.2945	245	4.6149	78	7.9352	48	11.2555	19	14.5759	10
1.3045	231	4.6249	84	7.9452	53	11.2655	28	14.5859	9
1.3145	174	4.6349	88	7.9552	39	11.2755	21	14.5959	13
1.3245	184	4.6449	71	7.9652	42	11.2855	22	14.6059	10
1.3345	142	4.6549	93	7.9752	32	11.2955	20	14.6159	6
1.3445	165	4.6649	74	7.9852	45	11.3055	17	14.6259	10
1.3545	167	4.6749	72	7.9952	42	11.3155	21	14.6359	14
1.3645	153	4.6849	75	8.0052	58	11.3255	28	14.6459	9
1.3745	166	4.6949	96	8.0152	40	11.3355	14	14.6559	10
1.3845	170	4.7049	72	8.0252	37	11.3455	17	14.6659	7
1.3945	226	4.7149	78	8.0352	51	11.3555	19	14.6759	9
1.4045	177	4.7249	81	8.0452	40	11.3655	17	14.6859	7
1.4145	174	4.7349	87	8.0552	36	11.3755	19	14.6959	10
1.4245	220	4.7449	66	8.0652	35	11.3855	26	14.7059	10
1.4345	217	4.7549	94	8.0752	38	11.3955	28	14.7159	7
1.4445	272	4.7649	86	8.0852	43	11.4055	28	14.7259	10
1.4545	269	4.7749	67	8.0952	51	11.4155	14	14.7359	15
1.4645	335	4.7849	87	8.1052	43	11.4255	31	14.7459	6
1.4745	326	4.7949	72	8.1152	40	11.4355	26	14.7559	6
1.4845	376	4.8049	70	8.1252	31	11.4455	29	14.7659	8
1.4945	357	4.8149	92	8.1352	31	11.4555	20	14.7759	16
1.5046	347	4.8249	81	8.1452	30	11.4655	18	14.7859	14
1.5146	325	4.8349	92	8.1552	48	11.4755	28	14.7959	3
1.5246	268	4.8449	88	8.1652	45	11.4855	32	14.8059	12
1.5346	244	4.8549	87	8.1752	46	11.4955	16	14.8159	14
1.5446	187	4.8649	74	8.1852	38	11.5056	24	14.8259	9
1.5546	192	4.8749	80	8.1952	42	11.5156	13	14.8359	11
1.5646	203	4.8849	70	8.2052	41	11.5256	15	14.8459	10
1.5746	203	4.8949	74	8.2152	44	11.5356	20	14.8559	11
1.5846	155	4.9049	86	8.2252	27	11.5456	19	14.8659	11
1.5946	176	4.9149	77	8.2352	32	11.5556	22	14.8759	4
1.6046	220	4.9249	55	8.2452	34	11.5656	17	14.8859	12

1.6146	202	4.9349	76	8.2552	44	11.5756	25	14.8959	10
1.6246	170	4.9449	90	8.2652	44	11.5856	25	14.9059	7
1.6346	228	4.9549	65	8.2752	56	11.5956	26	14.9159	10
1.6446	285	4.9649	70	8.2852	45	11.6056	24	14.9259	13
1.6546	410	4.9749	75	8.2952	44	11.6156	22	14.9359	15
1.6646	691	4.9849	91	8.3052	41	11.6256	34	14.9459	8
1.6746	1176	4.9949	84	8.3152	37	11.6356	25	14.9559	12
1.6846	1834	5.0049	77	8.3252	40	11.6456	25	14.9659	13
1.6946	2818	5.0149	84	8.3352	43	11.6556	20	14.9759	8
1.7046	3856	5.0249	85	8.3452	34	11.6656	18	14.9859	8
1.7146	4970	5.0349	71	8.3552	24	11.6756	23	14.9959	9
1.7246	5852	5.0449	69	8.3652	25	11.6856	23	15.0059	9
1.7346	6323	5.0549	75	8.3752	33	11.6956	23	15.0159	9
1.7446	6274	5.0649	86	8.3852	51	11.7056	15	15.0259	10
1.7546	5586	5.0749	61	8.3952	48	11.7156	19	15.0359	13
1.7646	4643	5.0849	77	8.4052	42	11.7256	25	15.0459	5
1.7746	3707	5.0949	88	8.4152	35	11.7356	22	15.0559	7
1.7846	2560	5.1049	73	8.4252	42	11.7456	20	15.0659	5
1.7946	1844	5.1149	93	8.4352	32	11.7556	17	15.0759	6
1.8046	1156	5.1249	64	8.4452	29	11.7656	26	15.0859	9
1.8146	866	5.1349	69	8.4552	51	11.7756	13	15.0959	11
1.8246	563	5.1449	62	8.4652	39	11.7856	17	15.1059	11
1.8346	524	5.1549	79	8.4752	46	11.7956	24	15.1159	14
1.8446	463	5.1649	78	8.4852	40	11.8056	17	15.1259	10
1.8546	398	5.1749	72	8.4952	33	11.8156	24	15.1359	11
1.8646	318	5.1849	68	8.5053	40	11.8256	22	15.1459	7
1.8746	266	5.1949	72	8.5153	40	11.8356	19	15.1559	11
1.8846	227	5.2049	84	8.5253	41	11.8456	19	15.1659	12
1.8946	239	5.2149	88	8.5353	48	11.8556	21	15.1759	9
1.9046	184	5.2249	86	8.5453	41	11.8656	14	15.1859	7
1.9146	170	5.2349	82	8.5553	35	11.8756	15	15.1959	9
1.9246	175	5.2449	72	8.5653	35	11.8856	26	15.2059	14
1.9346	166	5.2549	61	8.5753	34	11.8956	19	15.2159	7
1.9446	190	5.2649	53	8.5853	40	11.9056	27	15.2259	9
1.9546	173	5.2749	72	8.5953	35	11.9156	18	15.2359	9
1.9646	175	5.2849	77	8.6053	30	11.9256	12	15.2459	4
1.9746	165	5.2949	80	8.6153	35	11.9356	12	15.2559	5
1.9846	162	5.3049	74	8.6253	29	11.9456	27	15.2659	10
1.9946	157	5.3149	82	8.6353	33	11.9556	19	15.2759	8
2.0046	164	5.3249	63	8.6453	34	11.9656	26	15.2859	3
2.0146	166	5.3349	59	8.6553	33	11.9756	21	15.2959	8
2.0246	173	5.3449	63	8.6653	55	11.9856	18	15.3059	7
2.0346	159	5.3549	65	8.6753	37	11.9956	17	15.3159	7
2.0446	175	5.3649	77	8.6853	42	12.0056	12	15.3259	5
2.0546	183	5.3749	79	8.6953	45	12.0156	16	15.3359	5
2.0646	173	5.3849	74	8.7053	30	12.0256	27	15.3459	6
2.0746	167	5.3949	62	8.7153	28	12.0356	23	15.3559	12
2.0846	167	5.4049	73	8.7253	39	12.0456	16	15.3659	11
2.0946	158	5.4149	72	8.7353	30	12.0556	19	15.3759	9

0 10 10	1.0	5 42 40	<i>c</i> 0	0 7 4 5 2	22	10.0656	0.4	15 2050	10
2.1046	160	5.4249	69	8.7453	33	12.0656	24	15.3859	10
2.1146	166	5.4349	80	8.7553	48	12.0756	22	15.3959	16
2.1246	168	5.4449	65	8.7653	29	12.0856	21	15.4059	8
2.1346	158	5.4549	65	8.7753	39	12.0956	22	15.4159	5
2.1446	177	5.4649	73	8.7853	30	12.1056	17	15.4259	6
2.1546	194	5.4749	66	8.7953	38	12.1156	24	15.4359	4
2.1646	169	5.4849	58	8.8053	34	12.1256	15	15.4459	11
2.1746	176	5.4949	66	8.8153	47	12.1356	14	15.4559	15
2.1846	184	5.505	61	8.8253	30	12.1456	16	15.4659	4
2.1946	188	5.515	58	8.8353	32	12.1556	23	15.4759	4
2.2046	227	5.525	61	8.8453	38	12.1656	19	15.4859	12
2.2146	234	5.535	82	8.8553	30	12.1756	12	15.4959	4
2.2246	300	5.545	55	8.8653	44	12.1856	15	15.506	4
2.2346	378	5.555	69	8.8753	56	12.1956	14	15.516	9
2.2446	553	5.565	67	8.8853	31	12.2056	18	15.526	11
2.2546	700	5.575	57	8.8953	35	12.2156	15	15.536	7
2.2646	921	5.585	64	8.9053	46	12.2256	16	15.546	6
2.2746	1086	5.595	56	8.9153	30	12.2356	12	15.556	9
2.2846	1315	5.605	67	8.9253	26	12.2456	19	15.566	8
2.2946	1463	5.615	74	8.9353	41	12.2556	16	15.576	9
2.3046	1489	5.625	66	8.9453	48	12.2656	14	15.586	6
2.3146	1411	5.635	66	8.9553	43	12.2756	16	15.596	5
2.3246	1192	5.645	61	8.9653	28	12.2856	7	15.606	11
2.3346	1022	5.655	63	8.9753	34	12.2956	17	15.616	9
2.3446	838	5.665	77	8.9853	40	12.3056	19	15.626	7
2.3546	645	5.675	70	8.9953	43	12.3156	18	15.636	4
2.3646	499	5.685	59	9.0053	31	12.3256	16	15.646	11
2.3746	345	5.695	75	9.0153	33	12.3356	17	15.656	11
2.3846	268	5.705	75	9.0253	33	12.3456	19	15.666	8
2.3946	262	5.715	63	9.0353	35	12.3556	22	15.676	8
2.4046	199	5.725	70	9.0453	33	12.3656	${23}$	15.686	8
2.4146	198	5.735	57	9.0553	29	12.3756	13	15.696	7
2.4246	214	5.745	73	9.0653	36	12.3856	12	15,706	6
2.4346	184	5.755	76	9.0753	37	12.3956	10	15.716	7
2 4446	226	5 765	55	9.0853	33	12.4056	9	15.726	7
2.1110	213	5 775	76	9.0053	27	12.1050	10	15.720	6
2.1510	215	5 785	67	9 1053	$\frac{27}{27}$	12.1150	13	15.756	6
2.1010	222	5 795	62	9 1153	$\frac{27}{43}$	12.1250	17	15.710	10
2.4740	217	5 805	6 <u>6</u>	9 1253	26	12.4550	16	15.750	10 4
2.4040	154	5 815	60	9 1353	20	12.4456	10	15.700	т Л
2.7740 2 5047	180	5 825	70	9.1353	30	12.4556	13	15.776	ч О
2.50 + 7 2 51/7	1/3	5 835	76	0 1553	35	12.4050	28	15.700	11
2.5147	175	5 845	70 67	0 1653	33	12.4750	12	15.700	8
2.5247	201	5 855	58	9.1055	22	12.4050	12	15.800	0 7
2.3547	201	5 965	50 55	9.1733	20 20	12.4930	10	15.010	0
2.3441	232 220	J.00J 5 075	03 52	7.1033	20 22	12.303/	17	13.020 15.022	0 0
2.3341	220 220	J.8/J 5 00E	55 70	9.1903	33 24	12.313/	14 12	13.830 15 9 <i>16</i>	0 10
2.304/	33U 256	J.00J E 00E	12 72	9.2000	30 24	12.323/	13	13.040 15.056	1 <i>2</i> 0
2.3/4/	330 407	J.893 E 00E	12	9.2103	∠4 22	12.333/	15	13.830	0 7
2.3847	407	5.905	69	9.2233	23	12.3437	10	13.800	1

2.5947	441	5.915	71	9.2353	28	12.5557	23	15.876	5
2.6047	503	5.925	65	9.2453	31	12.5657	11	15.886	11
2.6147	561	5.935	63	9.2553	23	12.5757	24	15.896	5
2.6247	533	5.945	63	9.2653	34	12.5857	15	15.906	4
2.6347	518	5.955	60	9.2753	31	12.5957	29	15.916	3
2.6447	430	5.965	68	9.2853	53	12.6057	18	15.926	4
2.6547	354	5.975	57	9.2953	32	12.6157	12	15.936	9
2.6647	311	5.985	51	9.3053	37	12.6257	18	15.946	7
2.6747	275	5.995	67	9.3153	28	12.6357	12	15.956	7
2.6847	230	6.005	50	9.3253	33	12.6457	21	15.966	4
2.6947	225	6.015	58	9.3353	42	12.6557	14	15.976	8
2.7047	217	6.025	77	9.3453	28	12.6657	14	15.986	7
2.7147	208	6.035	57	9.3553	33	12.6757	19	15.996	5
2.7247	209	6.045	49	9.3653	34	12.6857	15	16.006	5
2.7347	239	6.055	52	9.3753	29	12.6957	17	16.016	6
2.7447	292	6.065	61	9.3853	35	12.7057	19	16.026	5
2.7547	292	6.075	64	9.3953	32	12.7157	16	16.036	9
2.7647	305	6.085	62	9.4053	38	12.7257	11	16.046	11
2.7747	247	6.095	62	9.4153	32	12.7357	16	16.056	3
2.7847	266	6.105	54	9.4253	38	12.7457	17	16.066	8
2.7947	290	6.115	64	9.4353	30	12.7557	11	16.076	11
2.8047	220	6.125	54	9.4453	31	12.7657	24	16.086	5
2.8147	204	6.135	56	9.4553	29	12.7757	18	16.096	8
2.8247	232	6.145	66	9.4653	33	12.7857	12	16.106	11
2.8347	151	6.155	71	9.4753	36	12.7957	18	16.116	2
2.8447	184	6.165	52	9.4853	32	12.8057	17	16.126	8
2.8547	154	6.175	70	9.4953	27	12.8157	14	16.136	6
2.8647	157	6.185	63	9.5054	31	12.8257	18	16.146	12
2.8747	145	6.195	57	9.5154	28	12.8357	11	16.156	12
2.8847	116	6.205	57	9.5254	28	12.8457	16	16.166	4
2.8947	161	6.215	56	9.5354	32	12.8557	20	16.176	9
2.9047	170	6.225	64	9.5454	28	12.8657	15	16.186	7
2.9147	130	6.235	54	9.5554	31	12.8/5/	15	16.196	3
2.9247	141	6.245	57	9.5654	33	12.8857	18	16.206	6
2.9347	1/3	6.255	59	9.5754	34	12.8957	24	16.216	2
2.9447	1/5	6.265	6/	9.5854	23	12.9057	19	16.226	9
2.9547	189	6.275	51	9.5954	35	12.9157	9	16.236	6
2.9647	176	6.285	61 54	9.6054	32	12.9257	1/	16.246	6
2.9/4/	1/4	6.295	54 70	9.6154	24	12.9357	13	16.256	4
2.9847	108	6.305	10	9.6254	29	12.9457	13	16.200	10
2.9947	196	6.315	60	9.6354	28	12.9557	18	16.276	5
3.0047	202	6.325	68	9.6454	24 15	12.9657	10	16.286	2
3.0147	239	6.335	00 74	9.6554	15	12.9757	20	16.296	8
3.0247	380	6.345	/4	9.6654	25	12.9857	10	16.300	3
3.0347	497	0.335	09 50	9.0754	21	12.9957	10	10.310	4
3.0447	000	0.303	Jð ⊿0	9.0834 0.6054	22 22	13.003/	11 12	10.320	ט ד
3.0547	709 1251	6 2 9 5	40 62	9.0934 0.7054	32 30	13.013/	10	10.330) Л
3.0047	1760	6 205	60 60	9.7034 0.7154	25	13.0237	10	16.340	+ 10
J.U/4/	1/07	0.373	00	2./134	55	13.0337	10	10.330	10
3.0847	2257	6.405	46	9.7254	27	13.0457	19	16.366	6
--------	------	--------	----	--------	----	---------	----	--------	----
3.0947	2673	6.415	48	9.7354	31	13.0557	21	16.376	8
3.1047	3207	6.425	59	9.7454	25	13.0657	16	16.386	3
3.1147	3507	6.435	53	9.7554	34	13.0757	19	16.396	2
3.1247	3735	6.445	75	9.7654	36	13.0857	13	16.406	10
3.1347	3663	6.455	63	9.7754	22	13.0957	15	16.416	5
3.1447	3428	6.465	54	9.7854	35	13.1057	14	16.426	10
3.1547	3044	6.475	63	9.7954	27	13.1157	13	16.436	12
3.1647	2379	6.485	54	9.8054	30	13.1257	14	16.446	5
3.1747	1971	6.495	57	9.8154	34	13.1357	20	16.456	5
3.1847	1490	6.5051	61	9.8254	31	13.1457	17	16.466	5
3.1947	1049	6.5151	58	9.8354	32	13.1557	12	16.476	1
3.2047	788	6.5251	61	9.8454	31	13.1657	15		
3.2147	633	6.5351	47	9.8554	27	13.1757	13		
3.2247	538	6.5451	52	9.8654	17	13.1857	10		

APÊNDICE B – EDX do filme fino de TiO₂

Bruker AXS Microanalysis GmbH Berlin, Germany Esprit 1.8

Date: 3/9/2009 16:11:41 Real time: 75643 Life time: 72737 Pulse density: 0

Primary energy: 30 Take off angle: 45 Tilt angle: 0 Azimut angle: 0

Detector type: Custom type Window type: slew AP3.3 Detector thickness: 0.45 Si dead layer:0.08

Calibration, lin.: 10.001 Calibration, abs.: -955.696 Mn FWHM: 131.454 Fano factor: 0.107 Channels: 4096

Energy	Counts	Energy	Counts	Energy	Counts	Energy	Counts	Energy	Counts
-0.0956	1	2.8647	153	5.825	45	8.7853	35	11.7456	23
-0.0856	4	2.8747	140	5.835	47	8.7953	33	11.7556	13
-0.0756	23	2.8847	143	5.845	43	8.8053	32	11.7656	14
-0.0656	96	2.8947	125	5.855	60	8.8153	37	11.7756	26
-0.0556	333	2.9047	119	5.865	37	8.8253	31	11.7856	16
-0.0456	845	2.9147	155	5.875	55	8.8353	21	11.7956	13
-0.0356	2079	2.9247	139	5.885	50	8.8453	21	11.8056	22
-0.0256	3873	2.9347	131	5.895	47	8.8553	34	11.8156	13
-0.0156	6100	2.9447	137	5.905	49	8.8653	29	11.8256	10
-0.0056	7789	2.9547	133	5.915	43	8.8753	27	11.8356	16
0.0044	8365	2.9647	145	5.925	57	8.8853	32	11.8456	13
0.0144	7522	2.9747	118	5.935	48	8.8953	34	11.8556	20
0.0244	5747	2.9847	104	5.945	50	8.9053	23	11.8656	9
0.0344	3813	2.9947	136	5.955	52	8.9153	26	11.8756	10
0.0444	1987	3.0047	150	5.965	57	8.9253	32	11.8856	8
0.0544	975	3.0147	155	5.975	47	8.9353	24	11.8956	12
0.0644	333	3.0247	134	5.985	49	8.9453	28	11.9056	10
0.0744	105	3.0347	109	5.995	47	8.9553	36	11.9156	13
0.0844	0	3.0447	118	6.005	55	8.9653	34	11.9256	11
0.0944	0	3.0547	136	6.015	48	8.9753	31	11.9356	12
0.1044	0	3.0647	110	6.025	40	8.9853	22	11.9456	16
0.1144	0	3.0747	121	6.035	42	8.9953	20	11.9556	14
0.1244	0	3.0847	126	6.045	58	9.0053	30	11.9656	10

0.1344	0	3.0947	125	6.055	51	9.0153	25	11.9756	8
0.1444	0	3.1047	116	6.065	49	9.0253	32	11.9856	19
0.1544	0	3.1147	119	6.075	58	9.0353	26	11.9956	15
0.1644	0	3.1247	113	6.085	53	9.0453	23	12.0056	19
0.1744	0	3.1347	108	6.095	51	9.0553	21	12.0156	17
0.1844	0	3.1447	132	6.105	49	9.0653	27	12.0256	14
0.1944	0	3.1547	141	6.115	51	9.0753	29	12.0356	14
0.2044	0	3.1647	140	6.125	39	9.0853	26	12.0456	12
0.2144	0	3.1747	134	6.135	51	9.0953	28	12.0556	11
0.2244	0	3.1847	133	6.145	36	9.1053	42	12.0656	8
0.2344	0	3.1947	122	6.155	48	9.1153	29	12.0756	18
0.2444	56	3.2047	110	6.165	62	9.1253	33	12.0856	15
0.2544	113	3.2147	149	6.175	50	9.1353	27	12.0956	11
0.2644	156	3.2247	103	6.185	59	9.1453	28	12.1056	22
0.2744	182	3.2347	115	6.195	49	9.1553	42	12.1156	9
0.2844	223	3.2447	114	6.205	57	9.1653	27	12.1256	14
0.2944	233	3.2547	118	6.215	50	9.1753	29	12.1356	11
0.3044	261	3.2647	140	6.225	62	9.1853	29	12.1456	13
0.3144	246	3.2747	120	6.235	38	9.1953	27	12.1556	14
0.3244	304	3.2847	142	6.245	38	9.2053	24	12.1656	10
0.3344	285	3.2947	134	6.255	57	9.2153	26	12.1756	14
0.3444	410	3.3047	135	6.265	48	9.2253	24	12.1856	11
0.3544	503	3.3147	143	6.275	46	9.2353	34	12.1956	13
0.3644	643	3.3247	154	6.285	56	9.2453	39	12.2056	15
0.3744	827	3.3347	153	6.295	55	9.2553	18	12.2156	14
0.3844	955	3.3447	124	6.305	54	9.2653	13	12.2256	10
0.3944	1026	3.3547	140	6.315	38	9.2753	25	12.2356	12
0.4044	1021	3.3647	135	6.325	49	9.2853	37	12.2456	5
0.4144	1053	3.3747	138	6.335	54	9.2953	29	12.2556	10
0.4244	1094	3.3847	133	6.345	42	9.3053	27	12.2656	13
0.4344	1129	3.3947	151	6.355	58	9.3153	28	12.2756	23
0.4444	1087	3.4047	128	6.365	45	9.3253	25	12.2856	5
0.4544	1017	3.4147	115	6.375	53	9.3353	22	12.2956	11
0.4644	958	3.4247	116	6.385	40	9.3453	21	12.3056	13
0.4744	995	3.4347	122	6.395	50	9.3553	27	12.3156	15
0.4844	1058	3.4447	121	6.405	48	9.3653	20	12.3256	11
0.4944	1261	3.4547	114	6.415	44	9.3753	21	12.3356	9
0.5045	1588	3.4647	137	6.425	44	9.3853	32	12.3456	20
0.5145	1825	3.4747	81	6.435	48	9.3953	26	12.3556	13
0.5245	1832	3.4847	95	6.445	45	9.4053	24	12.3656	7
0.5345	1782	3.4947	112	6.455	38	9.4153	28	12.3756	12
0.5445	1625	3.5048	87	6.465	45	9.4253	28	12.3856	11
0.5545	1103	3.5148	125	6.475	66	9.4353	30	12.3956	13
0.5645	679	3.5248	108	6.485	41	9.4453	27	12.4056	10
0.5745	289	3.5348	106	6.495	43	9.4553	29	12.4156	12
0.5845	206	3.5448	150	6.5051	40	9.4653	26	12.4256	8
0.5945	108	3.5548	107	6.5151	40	9.4753	23	12.4356	11
0.6045	58	3.5648	131	6.5251	47	9.4853	24	12.4456	12
0.6145	31	3.5748	142	6.5351	53	9.4953	44	12.4556	7

0.6245	22	3.5848	139	6.5451	44	9.5054	27	12.4656	16
0.6345	13	3.5948	137	6.5551	41	9.5154	20	12.4756	17
0.6445	5	3.6048	121	6.5651	48	9.5254	27	12.4856	11
0.6545	13	3.6148	142	6.5751	48	9.5354	29	12.4956	6
0.6645	19	3.6248	139	6.5851	46	9.5454	15	12.5057	13
0.6745	0	3.6348	146	6.5951	44	9.5554	25	12.5157	10
0.6845	42	3.6448	111	6.6051	45	9.5654	27	12.5257	16
0.6945	9	3.6548	117	6.6151	48	9.5754	22	12.5357	10
0.7045	32	3.6648	95	6.6251	42	9.5854	14	12.5457	11
0.7145	30	3.6748	98	6.6351	46	9.5954	31	12.5557	8
0.7245	18	3.6848	129	6.6451	47	9.6054	25	12.5657	14
0.7345	31	3.6948	97	6.6551	43	9.6154	18	12.5757	11
0.7445	48	3.7048	111	6.6651	48	9.6254	28	12.5857	9
0.7545	34	3.7148	124	6.6751	35	9.6354	33	12.5957	8
0.7645	54	3.7248	85	6.6851	43	9.6454	38	12.6057	8
0.7745	25	3.7348	117	6.6951	53	9.6554	27	12.6157	9
0.7845	31	3.7448	96	6.7051	41	9.6654	23	12.6257	15
0.7945	33	3.7548	120	6.7151	31	9.6754	29	12.6357	7
0.8045	32	3.7648	93	6.7251	46	9.6854	30	12.6457	9
0.8145	54	3.7748	92	6.7351	41	9.6954	27	12.6557	13
0.8245	43	3.7848	109	6.7451	53	9.7054	19	12.6657	6
0.8345	40	3.7948	101	6.7551	55	9.7154	24	12.6757	14
0.8445	31	3.8048	106	6.7651	41	9.7254	29	12.6857	7
0.8545	46	3.8148	93	6.7751	44	9.7354	23	12.6957	5
0.8645	55	3.8248	129	6.7851	56	9.7454	31	12.7057	16
0.8745	62	3.8348	114	6.7951	45	9.7554	25	12.7157	10
0.8845	38	3.8448	106	6.8051	44	9.7654	21	12.7257	10
0.8945	77	3.8548	96	6.8151	55	9.7754	25	12.7357	12
0.9045	58	3.8648	112	6.8251	45	9.7854	19	12.7457	8
0.9145	63	3.8748	111	6.8351	39	9.7954	36	12.7557	14
0.9245	53	3.8848	97	6.8451	44	9.8054	26	12.7657	11
0.9345	65	3.8948	84	6.8551	43	9.8154	22	12.7757	8
0.9445	77	3.9048	105	6.8651	41	9.8254	14	12.7857	9
0.9545	55	3.9148	96	6.8751	41	9.8354	27	12.7957	8
0.9645	67	3.9248	108	6.8851	44	9.8454	22	12.8057	11
0.9745	77	3.9348	102	6.8951	33	9.8554	19	12.8157	17
0.9845	84	3.9448	73	6.9051	47	9.8654	21	12.8257	7
0.9945	67	3.9548	84	6.9151	54	9.8754	28	12.8357	7
1.0045	41	3.9648	81	6.9251	40	9.8854	29	12.8457	13
1.0145	70	3.9748	62	6.9351	40	9.8954	25	12.8557	8
1.0245	83	3.9848	87	6.9451	42	9.9054	21	12.8657	8
1.0345	82	3.9948	74	6.9551	54	9.9154	21	12.8757	6
1.0445	76	4.0048	97	6.9651	41	9.9254	21	12.8857	6
1.0545	87	4.0148	77	6.9751	41	9.9354	31	12.8957	13
1.0645	86	4.0248	63	6.9851	40	9.9454	36	12.9057	10
1.0745	111	4.0348	74	6.9951	45	9.9554	19	12.9157	8
1.0845	92	4.0448	84	7.0051	36	9.9654	25	12.9257	11
1.0945	100	4.0548	61	7.0151	45	9.9754	21	12.9357	8
1.1045	99	4.0648	73	7.0251	40	9.9854	28	12.9457	8

1.1145	100	4.0748 83	7.0351	43	9,9954	19	12,9557	8
1.1245	89	4.0848 63	7.0451	53	10.0054	23	12.9657	16
1 1345	82	4 0948 56	7.0551	56	10.0154	15	12.9057	8
1.1445	119	4.1048 47	7.0651	45	10.0254	15	12.9857	8
1.1545	134	4.1148 61	7.0751	48	10.0354	27	12,9957	8
1.1645	131	4.1248 74	7.0851	47	10.0454	33	13.0057	12
1.1745	111	4.1348 53	7.0951	51	10.0554	27	13.0157	10
1 1845	136	4 1448 83	7 1051	39	10.0654	19	13.0257	9
1.1945	118	4.1548 79	7.1151	45	10.0754	36	13.0357	15
1.2045	113	4.1648 90	7.1251	37	10.0854	30	13.0457	11
1.2145	125	4.1748 53	7.1351	38	10.0954	22	13.0557	9
1.2245	135	4.1848 67	7.1451	41	10.1054	${28}$	13.0657	17
1.2345	111	4.1948 80	7.1551	31	10.1154	$\frac{-0}{20}$	13.0757	16
1.2445	132	4.2048 69	7.1651	41	10.1254	19	13.0857	10
1.2545	154	4.2148 104	7.1751	42	10.1354	23	13.0957	13
1.2645	131	4.2248 88	7.1851	38	10.1454	$\frac{1}{28}$	13.1057	4
1.2745	122	4.2348 62	7.1951	35	10.1554	$\frac{-3}{23}$	13.1157	13
1.2845	152	4.2448 81	7.2051	33	10.1654	23	13.1257	6
1.2945	122	4.2548 83	7.2151	38	10.1754	21	13.1357	7
1.3045	110	4.2648 70	7.2251	53	10.1854	24	13.1457	13
1.3145	139	4.2748 89	7.2351	53	10.1954	20	13.1557	11
1.3245	165	4.2848 69	7.2451	51	10.2054	24	13.1657	8
1.3345	161	4.2948 69	7.2551	30	10.2154	22	13.1757	16
1.3445	165	4.3048 78	7.2651	45	10.2254	23	13.1857	6
1.3545	166	4.3148 149	7.2751	41	10.2354	30	13.1957	11
1.3645	175	4.3248 153	7.2851	51	10.2454	17	13.2057	11
1.3745	148	4.3348 137	7.2951	24	10.2554	17	13.2157	2
1.3845	135	4.3448 186	7.3051	30	10.2654	24	13.2257	7
1.3945	145	4.3548 245	7.3151	38	10.2754	21	13.2357	6
1.4045	181	4.3648 412	7.3251	36	10.2854	27	13.2457	8
1.4145	158	4.3748 582	7.3351	45	10.2954	22	13.2557	9
1.4245	154	4.3848 898	7.3451	46	10.3054	24	13.2657	15
1.4345	165	4.3948 1227	7.3551	41	10.3154	23	13.2757	8
1.4445	176	4.4048 1861	7.3651	31	10.3254	24	13.2857	12
1.4545	181	4.4148 2517	7.3751	53	10.3354	20	13.2957	7
1.4645	179	4.4248 3550	7.3851	26	10.3454	27	13.3057	10
1.4745	175	4.4348 4649	7.3951	44	10.3554	23	13.3157	10
1.4845	192	4.4448 5958	7.4051	43	10.3654	21	13.3257	10
1.4945	202	4.4548 7155	7.4151	37	10.3754	24	13.3357	10
1.5046	204	4.4648 8272	7.4251	32	10.3854	24	13.3457	11
1.5146	211	4.4748 9417	7.4351	42	10.3954	20	13.3557	11
1.5246	172	4.4848 10133	7.4451	29	10.4054	15	13.3657	12
1.5346	207	4.4948 10369	7.4551	47	10.4154	27	13.3757	14
1.5446	151	4.5049 10400	7.4651	39	10.4254	17	13.3857	13
1.5546	190	4.5149 9925	7.4751	22	10.4354	22	13.3957	8
1.5646	181	4.5249 9227	7.4851	34	10.4454	16	13.4057	6
1.5746	144	4.5349 7943	7.4951	36	10.4554	15	13.4157	6
1.5846	171	4.5449 6927	7.5052	26	10.4654	17	13.4257	17
1.5946	143	4.5549 5676	7.5152	37	10.4754	28	13.4357	13

1.6046	167	4.5649	4399	7.5252	49	10.4854	16	13.4457	7
1.6146	137	4.5749	3370	7.5352	42	10.4954	18	13.4557	4
1.6246	136	4.5849	2466	7.5452	47	10.5055	21	13.4657	9
1.6346	194	4.5949	1734	7.5552	37	10.5155	23	13.4757	6
1.6446	160	4.6049	1187	7.5652	29	10.5255	20	13.4857	9
1.6546	157	4.6149	839	7.5752	42	10.5355	14	13.4957	16
1.6646	175	4.6249	551	7.5852	39	10.5455	16	13.5058	10
1.6746	187	4.6349	335	7.5952	36	10.5555	31	13.5158	4
1.6846	153	4.6449	240	7.6052	41	10.5655	18	13.5258	11
1.6946	167	4.6549	168	7.6152	23	10.5755	22	13.5358	6
1.7046	167	4.6649	145	7.6252	36	10.5855	22	13.5458	7
1.7146	178	4.6749	125	7.6352	29	10.5955	18	13.5558	9
1.7246	178	4.6849	107	7.6452	28	10.6055	12	13.5658	8
1.7346	169	4.6949	121	7.6552	41	10.6155	14	13.5758	6
1.7446	209	4.7049	109	7.6652	29	10.6255	18	13.5858	10
1.7546	146	4.7149	103	7.6752	38	10.6355	25	13.5958	10
1.7646	182	4.7249	110	7.6852	35	10.6455	22	13.6058	8
1.7746	172	4.7349	107	7.6952	41	10.6555	25	13.6158	13
1.7846	181	4.7449	132	7.7052	31	10.6655	24	13.6258	9
1.7946	177	4.7549	131	7.7152	39	10.6755	22	13.6358	7
1.8046	160	4.7649	123	7.7252	37	10.6855	23	13.6458	6
1.8146	185	4.7749	145	7.7352	48	10.6955	19	13.6558	6
1.8246	144	4.7849	158	7.7452	35	10.7055	17	13.6658	6
1.8346	182	4.7949	178	7.7552	35	10.7155	23	13.6758	6
1.8446	197	4.8049	254	7.7652	33	10.7255	15	13.6858	4
1.8546	158	4.8149	280	7.7752	31	10.7355	14	13.6958	6
1.8646	158	4.8249	355	7.7852	35	10.7455	18	13.7058	14
1.8746	165	4.8349	453	7.7952	53	10.7555	14	13.7158	10
1.8846	155	4.8449	549	7.8052	25	10.7655	20	13.7258	11
1.8946	158	4.8549	704	7.8152	32	10.7755	19	13.7358	11
1.9046	163	4.8649	875	7.8252	35	10.7855	24	13.7458	4
1.9146	186	4.8749	995	7.8352	28	10.7955	16	13.7558	9
1.9246	162	4.8849	1054	7.8452	35	10.8055	19	13.7658	3
1.9346	144	4.8949	1213	7.8552	31	10.8155	19	13.7758	8
1.9446	175	4.9049	1273	7.8652	43	10.8255	24	13.7858	18
1.9546	172	4.9149	1391	7.8752	35	10.8355	10	13.7958	6
1.9646	189	4.9249	1368	7.8852	36	10.8455	18	13.8058	7
1.9746	202	4.9349	1267	7.8952	38	10.8555	14	13.8158	10
1.9846	198	4.9449	1223	7.9052	37	10.8655	14	13.8258	12
1.9946	219	4.9549	1091	7.9152	34	10.8755	15	13.8358	5
2.0046	230	4.9649	955	7.9252	45	10.8855	15	13.8458	6
2.0146	225	4.9749	813	7.9352	39	10.8955	13	13.8558	5
2.0246	232	4.9849	671	7.9452	40	10.9055	20	13.8658	8
2.0346	228	4.9949	532	7.9552	30	10.9155	17	13.8758	8
2.0446	201	5.0049	433	7.9652	35	10.9255	24	13.8858	8
2.0546	200	5.0149	322	7.9752	36	10.9355	12	13.8958	4
2.0646	189	5.0249	235	7.9852	38	10.9455	18	13.9058	5
2.0746	188	5.0349	184	7.9952	24	10.9555	31	13.9158	8
2.0846	188	5.0449	129	8.0052	32	10.9655	14	13.9258	7

2.0946	167	5.0549	126	8.0152	38	10.9755	13	13.9358	9
2.1046	207	5.0649	92	8.0252	43	10.9855	19	13.9458	6
2.1146	190	5.0749	88	8.0352	38	10.9955	12	13.9558	7
2.1246	174	5.0849	77	8.0452	40	11.0055	17	13.9658	6
2.1346	178	5.0949	77	8.0552	34	11.0155	17	13.9758	7
2.1446	201	5.1049	70	8.0652	23	11.0255	29	13.9858	3
2.1546	148	5.1149	63	8.0752	36	11.0355	18	13.9958	12
2.1646	193	5.1249	65	8.0852	40	11.0455	12	14.0058	9
2.1746	184	5.1349	59	8.0952	31	11.0555	22	14.0158	12
2.1846	205	5.1449	57	8.1052	49	11.0655	13	14.0258	6
2.1946	146	5.1549	57	8.1152	37	11.0755	13	14.0358	8
2.2046	175	5.1649	40	8.1252	33	11.0855	16	14.0458	10
2.2146	163	5.1749	66	8.1352	36	11.0955	13	14.0558	8
2.2246	142	5.1849	52	8.1452	29	11.1055	25	14.0658	6
2.2346	157	5.1949	57	8.1552	31	11.1155	18	14.0758	9
2.2446	173	5.2049	60	8.1652	35	11.1255	13	14.0858	6
2.2546	173	5.2149	75	8.1752	31	11.1355	15	14.0958	4
2.2646	149	5.2249	60	8.1852	27	11.1455	13	14.1058	8
2.2746	163	5.2349	64	8.1952	37	11.1555	13	14.1158	11
2.2846	182	5.2449	53	8.2052	27	11.1655	15	14.1258	11
2.2946	171	5.2549	40	8.2152	31	11.1755	12	14.1358	15
2.3046	167	5.2649	55	8.2252	42	11.1855	18	14.1458	8
2.3146	152	5.2749	67	8.2352	32	11.1955	18	14.1558	6
2.3246	165	5.2849	66	8.2452	30	11.2055	12	14.1658	7
2.3346	143	5.2949	63	8.2552	31	11.2155	17	14.1758	5
2.3446	156	5.3049	60	8.2652	25	11.2255	13	14.1858	7
2.3546	152	5.3149	59	8.2752	39	11.2355	11	14.1958	9
2.3646	167	5.3249	59	8.2852	44	11.2455	15	14.2058	3
2.3746	163	5.3349	68	8.2952	35	11.2555	13	14.2158	9
2.3846	148	5.3449	53	8.3052	34	11.2655	18	14.2258	8
2.3946	141	5.3549	63	8.3152	35	11.2755	16	14.2358	8
2.4046	183	5.3649	43	8.3252	38	11.2855	19	14.2458	11
2.4146	138	5.3749	71	8.3352	29	11.2955	15	14.2558	4
2.4246	155	5.3849	52	8.3452	40	11.3055	21	14.2658	7
2.4346	130	5.3949	47	8.3552	36	11.3155	15	14.2758	3
2.4446	168	5.4049	50	8.3652	32	11.3255	21	14.2858	9
2.4546	165	5.4149	51	8.3752	33	11.3355	17	14.2958	3
2.4646	153	5.4249	44	8.3852	30	11.3455	18	14.3058	3
2.4746	149	5.4349	60	8.3952	36	11.3555	9	14.3158	6
2.4846	156	5.4449	53	8.4052	35	11.3655	12	14.3258	5
2.4946	155	5.4549	67	8.4152	29	11.3755	23	14.3358	5
2.5047	152	5.4649	60	8.4252	32	11.3855	19	14.3458	5
2.5147	148	5.4749	41	8.4352	32	11.3955	17	14.3558	7
2.5247	157	5.4849	55	8.4452	28	11.4055	15	14.3658	8
2.5347	167	5.4949	47	8.4552	41	11.4155	27	14.3758	6
2.5447	152	5.505	60	8.4652	36	11.4255	14	14.3858	5
2.5547	153	5.515	44	8.4752	30	11.4355	13	14.3958	10
2.5647	153	5.525	58	8.4852	28	11.4455	13	14.4058	6
2.5747	171	5.535	47	8.4952	35	11.4555	21	14.4158	7

2.5847	177	5.545	53	8.5053	31	11.4655	11	14.4258	9
2.5947	201	5.555	52	8.5153	34	11.4755	20	14.4358	10
2.6047	166	5.565	66	8.5253	44	11.4855	17	14.4458	13
2.6147	191	5.575	61	8.5353	25	11.4955	13	14.4558	9
2.6247	204	5.585	65	8.5453	33	11.5056	10	14.4658	12
2.6347	163	5.595	55	8.5553	30	11.5156	17	14.4758	8
2.6447	177	5.605	70	8.5653	28	11.5256	19	14.4858	5
2.6547	164	5.615	52	8.5753	32	11.5356	11	14.4958	6
2.6647	162	5.625	53	8.5853	39	11.5456	15	14.5059	11
2.6747	184	5.635	68	8.5953	35	11.5556	14	14.5159	6
2.6847	119	5.645	59	8.6053	29	11.5656	12	14.5259	5
2.6947	149	5.655	63	8.6153	30	11.5756	14	14.5359	8
2.7047	164	5.665	48	8.6253	28	11.5856	21	14.5459	4
2.7147	133	5.675	53	8.6353	34	11.5956	15	14.5559	6
2.7247	162	5.685	62	8.6453	30	11.6056	13	14.5659	7
2.7347	171	5.695	69	8.6553	30	11.6156	16	14.5759	8
2.7447	146	5.705	56	8.6653	31	11.6256	6	14.5859	9
2.7547	150	5.715	61	8.6753	17	11.6356	14	14.5959	7
2.7647	155	5.725	50	8.6853	34	11.6456	13	14.6059	10
2.7747	135	5.735	52	8.6953	31	11.6556	19	14.6159	7
2.7847	138	5.745	52	8.7053	37	11.6656	10	14.6259	6
2.7947	146	5.755	53	8.7153	42	11.6756	15	14.6359	8
2.8047	143	5.765	56	8.7253	33	11.6856	13	14.6459	8
2.8147	156	5.775	39	8.7353	26	11.6956	11	14.6559	9
2.8247	132	5.785	55	8.7453	21	11.7056	12	14.6659	7
2.8347	117	5.795	61	8.7553	33	11.7156	10	14.6759	4
2.8447	159	5.805	49	8.7653	25	11.7256	13		
2.8547	104	5.815	58	8.7753	26	11.7356	14		

REFERÊNCIAS

ALIEV, A. S., MAMEDOV, M. N., ABBASOV, M. T., 2009. Photoeletrochemical Properties of TiO2/CdS Heterostructures. Inorganic Materials, No. 9, p. 965-967.

ASHRAE. Handbook of HVAC applications. ASHRAE, Atlanta.

BISWAS S. et al. Photocatalytic activity of high-vacuum annealed CdS–TiO2 thin film. Thin Solid Films, v. 516, 2008.

BONNET D., RABENHORST H. New results on the development of a thin film p-CdTen-CdS heterojunction solar cell. Proceedings of the 9th Photovoltaic Specialists Conference, pp. 129–131, 1972.

CHAGAS, F. C. M. Células solares: Estrutura Semicondutor – Isolante – Semicondutor. 1984. 125 f. Dissertação (Mestrado em Engenharia Mecânica) Universidade Estadual de Campinas, Campinas, 1984.

DUFFIE, J.A., BECKMAN, W.A., 1991. Solar engineering of thermal processes. John Wiley and Sons, new York.

EISEBERG E RESNICK, Física Quântica. 2ª Edição, Rio de Janeiro: Editora Campus, p. 922. 1979.

FEITOSA A. V. ET al. A new route for preparing CdS thin films by chemical bath deposition using EDTA as ligant. Brazilian Journal of Physics, vol. 34, no. 2B, 2004.

FEREKIDES, C., BRITT, J., MA, Y., KILLIAN, L. **High efficiency CdTe solar cells by lose spaced sublimation.** Proceedings of Twenty-Third-Photovoltaic-Specialists-Conference IEEE, New York, USA, p. 389, 1993. FREITAS F. E. Célula solar de SnO2/TiO2 preparada por "spray" – pirólise ativada com corante orgânico. Dissertação (Mestrado em Ciência dos materiais) – Departamento de Física e Química – Universidade Estadual Paulista, 2006.

FREITAS, J. N.; LAMAZAKI, E. T.; ATVARS, T. D. Z.; LI, R. W. C.; YAMAUCHI, E. Y.; GRUBER, J.;HUMMELGEN, I. A. E NOGUEIRA, A. F. Células solares orgânicas de polifluoreno/fulereno sensibilizadas por corante. In: Reunião anual da sociedade Brasileira de Química, Campinas. 2002.

GAO, X. F., SUN, W. T., HU, D. T., AI, G., 2009. An Efficient Method To Form Heterojunction CdS/TiO2 Photoelectrodes Using Highly Ordered TiO2 Nanotube Array Films. Journal of Physics and Chemistry, C 2009, 113, p. 20481-20485.

GOETZBERGER, A.; HEBLING, C.; SCHOCK, H.-W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering, Sydney, Austrália, v. 40, p. 1-46, 2003.

GONÇALVES, R. N., FIGUEREDO, D., RABELO, A. P. B., DELBONI, L. F., ASSUMPÇÃO, R. Estudo da deposição química de filmes finos de sulfeto de cádmio (CdS). VI Congresso Brasileiro de Engenharia Química em Iniciação Científica, Campinas, Brasil, 2005.

GREEN, M. A., 1982. Solar cells: Operating principles, technology and system applications. Englewood Cliffs, NJ, Prentice-Hall, Inc., 288p.

GUO, Q., KIM, S., KAR, M., SHAFARMAN, W. N., BIRKMIRE, R. W. Development of CuInSe2 Nanocrystal and Nanorin Inks for Low-Cost Solar Cells. Nano Letters, V. 8, p. 2982-2987, 2008.

HEGEDUS, S. S. ET al. Status, trends, challenges and the bright future of solar electricity from photovoltaics. John Wiley & Sons, Ltd – 2003.

HUYNH, W. U., DITTMER, J. J., ALIVISATOS, A. P. Hybrid nanorod-polymer solar cells. Science, V.295, p. 2425-2427, 2002.

JOSHI, P., XIE, Y., ROOP, M., GALIPEAU, D., BAILEY, S., QUIAO, Q. Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode. Energy & Environmental Science. V. 2, p. 426-429, 2009.

JÚNIOR, E. M. S., 2004. Sistema fotovoltaico para iluminação pública em horário de ponta. 114f. Dissertação (Mestrado em Engenharia Elétrica) Universidade Federal do Ceará, Fortaleza.

KALOGIROU, S. Solar energy engineering: Processes and systems, Elsevier Inc. 2009.

KALYANASUNDARAM, K. and GRÄTZEL, M.: **Applications of functionalized transition metal complexes in photonic and optoelectronic devices**. Rev. Coordination Chemistry reviews. Lausanne, Switeerkind, v. 77, n. 1-3 p. 347–414, 1998.

KANG, M. G., KIM, M. S., GUO, L. J. Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes. Adv. Mater., V. 20, p. 4408-4413, 2008.

KREITH, F., KREIDER, J. F., 1978. **Principles of solar engineering**. McGraw-Hill, New York.

KUANTAMA, E., HAN, D. W., SUNG, Y. M., SONG, J. F., HAN, C. H., 2009. Structure and thermal properties of transparent conductive nanoporous F:SnO2 films. Thin Solid Films, V 517, p. 4211-4214.

LANDI, B. J. ET AL. CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Solar Energy Materials & Solar Cells, V. 87, p. 733-746, 2005. LINCOT, D. ET AL. Chalcopyrite thin film solar cells by eletrodeposition. Solar Energy, V. 77, p. 725-737, 2004. MANE, R. S.; PATHAN, H. M.; LOKHANDE, C. D.; HAN, SUNG-HWAN. An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells. Solar Energy, V. 80, p. 185-190, 2006.

MATHEW, X.; ENRIQUEZ, P. J.; ROMEO, A.; TIWARI, A. N. CdTe/CdS solar cells on flexible substrates. Solar Energy, V. 77, p. 831-838, 2004.

MATIAS, J. G. N., 1993. **Preparação e caracterização de filmes semicondutores de Sulfeto de Cádmio**. 100f. Dissertação (Mestrado em Física) Universidade Federal do Ceará, Fortaleza.

MORA-SERÓ, I., GIMENEZ, S., FABREGAT-SANTIAGO, F., GÓMEZ, R., SHEN, Q. **Recombination in quantum Dot Sensitized solar Cells**. Accounts of Chemical Research, v. 42, No. 11, p. 1848-1857, 2009.

NAKADA, T. ET AL. Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts. Solar Energy, V.77, p. 739-747, 2004.

NEAMEN D. A. Semiconductor physics and devices, third edition. McGraw-Hill – New York, NY, 2003.

NELSON, J. The Physics of Solar Cells, Imperial College Press, 2003.

NOGUEIRA, A. F.. Conversão de Energia luminosa em Eletricidade Utilizando TiO₂ / corante / Eletrólito Sólido Polimérico. 101 f. Dissertação (Mestrado em Química) Universidade Estadual de Campinas, Campinas SP, 1998.

ROMEO, N; BOSIO, A.; CANEVARI, V.; POTESTÀ, A. Recent progress on CdTe/CdS thin film solar cells. Solar Energy, V. 77, p. 795-801, 2004.

RÜTHER, R., 1999. **Panorama atual da utilização da energia solar fotovoltaica. Relatório interno.** Departamento de Engenharia Mecânica, LABSOLAR, Universidade Federal de Santa Catarina, Florianópolis.

SHU, Q., WEI, J., WANG, K., ZHU, H., LI, Z., JIA, Y., GUI, X., GUO, N., LI, X., A, C., WU, D. Hybrid heterojunction and Photoelectrochemistry solar cell based On silicon nanowires and double-walled Carbon nanotubes. Nano Letters, V. 9, No. 12, p. 4338-4342, 2009.

SPENCER, J. W. Fourier series representation of position of the sun. Search 2 (5), 172.

TIEDJE, T., YABLONOVITCH, E.CODY, G., BROOKS, B. G. Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices, V. ED-31, no. 5, p. 711-716, 1984.

TYAN, Y.S., PEREZ-ALBUERNE, E.A. **Efficient thin film CdS/CdTe solar cells**. Proceedings of 16th IEEE Photovoltaic Specialists Conference. IEEE Publishing, New York, p. 794, 1982.

VASEKAR, P. S.; DHERE, N. G.; MOUTINHO, L. **Development of CIGS2 solar cells with lower absorber thickness.** Solar Energy, V. 83, p. 1566-1570, 2009.

WIBERG E., HOLLEMAN A. F. Inorganic Chemistry, Elsevier, 2001.

WU, X., KEANE, J.C., DHERE, R.G., DEHART, C., ALBIN, D.S., DUDA, A., GESSERT, T.A., ASHER, S., LEVI, D.H., SHELDON, P. **16.5%-Efficient CdS/CdTe polycrystalline thin-film solar cell.** Proceedings of the 17th European Photov. Solar Energy Conf., Munich, Germany, II, p. 995, 2001.

YAMAGUCHI, M.; TAKAMOTO, T.; ARAKI, K.; EKINS-DAUKES, N. Multi-junction III-V solar cells: current status and future potencial. Solar Energy, V. 79, p. 78-85, 2005.

ZHANG, Q., NING, Z., PEI, H., WU, W. **Dye-sensitized solar cells based on bisindolylmaleimide derivatives**. Frontiers of Chemistry in China Vol. 4, NO. 3, p. 269-277, 2009